807 resultados para Eutectic alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-20Gd(%, mass fraction) samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated alpha-Mg solid solution phase and the as-east ingot mainly contains alpha-Mg solid solution and Mg5Gd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2%. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For improving the electrode characteristics of the Zr-based AB(2)-type alloy, a new kind of composite hydrogen Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2)(represented as AB(2)) with a rare storage alloy was successfully prepared by ball-milling I earth-based AB(5)-type alloy (represented as AB(5)) which worked as a surface modifier. Effects of ball-milling on the electrode characteristics and microstructure of Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2) alloy and mixtures of AB(2) with AB(5) alloy were investigated. After milling the mixed AB(2) and AB(5) powders (9: 1 in mass ratio) for 10min, XRD and SEM analysis showed that AB(2) and AB(5) maintained their original crystalline states, respectively, some AB(5) particles were adhered onto the surface of AB(2), and some fresh surfaces were formed. It was found that the activation cycles of AB(2)-AB(5) composite alloy was shortened from 14 to 7 and the maximum discharge capacity was increased from 330mAh . g(-1) to 347mAh . g(-1) as compared with AB(2) alloy. The discharge rate capability of AB(2) alloy was also improved by ball milling AB(2) with AB(5) alloy process. The combined effect of ball-milling and mixing with AB(5) alloy is superior to that of sole treatment. It was believed that AB(5) alloy works not only as a regular hydrogen storage alloy, but also as a surface modifier to catalyze the hydriding/ dehydriding process of AB(2) alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical properties of rare earth AB(3)-type hydrogen storage alloys as negative electrode material and a polymer instead of 6 M KOH aqueous solution as solid state electrolyte in MH-Ni battery have been investigated at room temperature and 28degreesC first time. The partial replacement of Ni by Al and Mn elements increases the specific capacity and cycle stability of the alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical performance of Laves phase alloys LaAl2 and LaAl1.5Ni0.5 were investigated. The results showed that LaAl2 alloy milled for 2 hours has the larger discharge capacity than that of as-cast alloy. In addition, partial substitution of Ni for Al will clearly increases the discharge capacity of milled LaAl2 alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behavior of Nd3+ and Ho3+ ions on molybdenum electrode in the LiCl-KCl eutectic melts has been studied by cyclic voltammetry and open-circuit potentiometry. The results show that the reduction process of Nd3+ and Ho3+ ions on molybdenum electrode is one-step three electron reversible reaction. The diffusion coefficients of Nd3+ and Ho3+ ions are 1.13 x 10(-6) cm(2).s(-1)(450 degrees C) and 2.142 x 10(-5) cm(2).s(-1)(450 degrees C), respectively. The measured standard electrode potential of Ho3+/Ho is 2.987 V(vs. Cl/Cl-), being more negative than the theoretical one, the reason of which is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrolysis technique for co-deposition of Ca2+ and Na+ at the liquid lead cathode was put forward. The experiment was carried out at an electrolysis temperature below 650 degrees C and had a current efficiency of 98%, which are respectively 100 similar to 300 degrees C lower and 15% similar to 30% higher than those reported both at home and abroad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical reduction of yttrium ion on a molybdenum electrode in a LiCl-KCl-NaCl eutectic melt at 723 K was found to be almost reversible and to proceed by a one-step three electron reaction. The diffusion coefficient D of the Y(III) ion was measured to be (3.3 +/- 0.4) x 10(-6) cm2 s-1 by cyclic voltammetry, (5.0 +/- 0.9) x 10(-6) cm2 s-1 by the rotating disk electrode method, and (7.1 +/- 0.7) x 10(-6) cm2 s-1 by chronopotentiometry. The D values obtained by the latter two methods are in fairly good agreement with each other. The rather low D value obtained by cyclic voltammetry might be attributed to the fact that yttrium metal can dissolve slightly in the chloride melt. The standard potential of Y(III)/Y(0) couple was determined to be (-3.174 +/- 0.006) V (vs. Cl2/Cl-) by open-circuit potentiometry, (-3.15 +/- 0.02) V (vs. Cl2/Cl-) by the rotating disk electrode method and (-3.16 +/- 0.02) V (vs. Cl2/Cl) by chronopotentiometry. These three values are in good agreement with each other. Several types of Ni-Y intermetallic compounds were found to be formed on a nickel electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spark discharge was the representative phenomenon of Micro-arc oxidation (MAO) method distinguished from other electrochemical oxidation methods. Under the spark discharge treatment, characteristics of the anodic layer were significantly changed. To investigate the influences of the spark discharge, a piece of magnesium alloy AZ91D specimen was partly treated by MAO method in alkaline silicate solution. And the microstructure, element distributions as well as the surface potential distributions of the specimen were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and scanning Kelvin probe (SKP) technique. As a result of intensive spark discharge treatment, porous external layer with dense internal layer were formed on Mg alloy surface. At the same time, the depositions of OH- and SiO32- ions were accelerated, which resulted in the enrichment of element oxygen and silicon at the spark discharge region. Moreover, due to the compact internal layer, the intensive spark discharge region exhibited more positive potentials with respect to other regions, which meant this region could restrain the ejection of electron and provide effective protection to the substrate. In addition, it was found that oxygen played a vital role in determining the intensity and size of sparks, and abundant oxygen resulted in intensive and larger sparks. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With increasing applied voltage, three types of anodic coatings, passive film, micro-spark ceramic coating and spark ceramic coating were made by micro-arc oxidization (MAO) technique on AZ91D magnesium alloy in alkali-silicate solution. The structure, composition characteristics and the electrochemical properties of coatings were also studied with SEM, XRD and EIS (electrochemical impedance spectroscopy) technique, respectively. It is found that the electrochemical properties are closely related to the structure and composition characteristics of the anodic coatings. At the same time, the characteristics of the three types of anodic coatings differ significantly, among them, the micro-spark ceramic coating, prepared in the voltage range of 170similar to220V exhibits compact, homogeneous structure and highest corrosion-resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot dip Zn-Al alloy coating performs better than hot dip galvanized coating and 55% Al-Zn-Si coating as well with regard to general seawater corrosion protection. A characterization of the corrosion products on Zn-Al alloy coating immersed in dynamic aerated seawater has been performed mainly based on transmission electron microscopy (TEM) for morphological analysis and X-ray diffraction (XRD) technique for crystalline phase identification. The XRD and TEM analyses showed that the corrosion products mainly were typical nanometer Zn4CO3(OH)(6).H2O, Zn-5(OH)(8)Cl-2 and Zn6Al2CO3(OH)(16). 4H(2)O microcrystals. This probably is connected to the co-precipitation of Zn2+ and Al3+ ions caused by adsorption. Zn-Al alloy coating being suffered seawater attacks, AI(OH)(3) gel was first produced on the coating surface. Zn and Al hydroxides would co-precipitate and form double-hydroxide when the concentration of adsorbed Zn2+ ions by the newly produced gel exceeded the critical degree of supersaturation of the interphase nucleation. However, because the growth of the crystals was too low to keep in step with the nucleation, a layer of nano-crystalline corrosion products were produced on the surface of the coating finally. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

25%Al-Zn alloy coating performs better than hot dip galvanized coating and 55%Al-Zn-Si coating with regard to general seawater corrosion protection. This study deals with the interfacial intermetallic layer's growth, which affects considerably the corrosion resistance and mechanical properties of 25%Al-Zn alloy coatings, by means of three-factor quadratic regressive orthogonal experiments, The regression equation shows that the intermetallic layer thickness decreases rapidly with increasing content of Si added to the Zn-Al alloy bath, increases with rise in bath temperature and prolonging dip time. The most effective factor that determined the thickness of intermetallic layer was the amount of Si added to Zn-Al alloy bath, while the effect of bath temperature and dip time on the thickness of intermetallic layer were not very obvious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of alloy elements on corrosion of low alloy steel was studied under simulated offshore conditions. The results showed that the elements Cu, P, Mo, W, V had evident effect on corrosion resistance in the atmosphere zone; Cu, P, V, Mo in the splash zone and Cr, Al, Mo in the submerged zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibition effect of nicotinic acid for corrosion of hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid was investigated using quantum chemistry analysis, weight loss test, electrochemical measurement, and scanning electronic microscope (SEM) analysis. Quantum chemistry calculation results showed that nicotinic acid possessed planar structure with a number of active centers, and the populations of the Mulliken charge, the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) were found mainly focused around oxygen and nitrogen atoms, and the cyclic of the benzene as well. The results of weight loss test and electrochemical measurement indicated that inhibition efficiency (IE%) increased with inhibitor concentration, and the highest inhibition efficiency was up to 96.7%. The corrosion inhibition of these coatings was discussed in terms of blocking the electrode reaction by adsorption of the molecules at the active centers on the electrode surface. It was found that the adsorption of nicotinic acid on coating surface followed Langmuir adsorption isotherm with single molecular layer, and nicotinic acid adsorbed on the coating surface probably by chemisorption. Nicotinic acid, therefore, can act as a good nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid solution. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion rate of low alloy steel in different sea zones has close correlation with the content of the alloy element. From the field data of steel corrosion rates in atmospheric zone, splash zone and immersion zone, regression analysis was used to study the correlation between the corrosion rate of steels and the amount of added alloy elements. Three regression equations were obtained in different sea zones. Based on the equations, the anti-corrosion performance of the alloy elements can be deduced which can be used to screen out low alloy steel with good anti-corrosion performance. (C) 2007 Elsevier B.V. All rights reserved.