922 resultados para Estuarine ecosystems
Resumo:
Mestrado Mediterranean Forestry and Natural Resources Management - Instituto Superior de Agronomia - UL
Resumo:
Coastal lagoons are considered one of the most productive areas of our planet harboring a large variety of habitats. Their transitional character, between terrestrial and marine environments, creates a very particular ecosystem with important variations of its environmental conditions. The organisms that are able to survive on these ecosystems frequently experience strong selective pressures and constrictions to gene flowwith marine populations, which could contribute to genetic divergence among populations inhabiting coastal lagoon and marine environments. Therefore, the main aims of this study are to asses the genetic diversity and population structure of Holothuria arguinensis across geographical ranges, to test the hypothesis of coastal lagoons as hotspots of genetic diversity in the Ria Formosa lagoon, and to determine the role of exporting standing genetic variation from the lagoon to open sea and their implications to recent geographical expansion events. To reach these objectives, we investigate the genetic structure of H. arguinensis using two mitochondrial DNA markers (COI and 16S) at different spatial scales: i) small, inside Ria Formosa coastal lagoon, South Portugal; 2) large, including most of the geographical distribution of this species (South and Western Portuguese coast and Canary islands); these results will allow us to compare the genetic diversity of lagoonal and marine populations of H. arguinensis. On this framework, its recent geographical expansion events, recorded by Rodrigues (2012) and González-Wangüemert and Borrero-Pérez (2012), will be analyzed considering the potential contribution from lagoonal genetic pool. Non-significant genetic structure and high haplotypic diversity were found inside the Ria Formosa coastal lagoon. Both genes were unable to detect significant genetic differentiation among lagoonal and marine localities, suggesting a high rate of gene flow. The results supported our hypotheses that coastal lagoons are not only acting as hotspots of genetic diversity, but also contributing for the genetic variability of the species, working as a source of new haplotypes and enhancing adaptation to the high variable conditions. Different genetic patterns of colonization were found on H. arguinensis, but they must be studied more deeply.
Resumo:
The objectives are, firstly, to identify the role of the university-focused intermediaries, specifically University-focused Venture Capital Firms (UVCs), in order to explain how they interact at the early stage of University Spin-out Companies (USOs) creation, particularly regarding knowledge sharing. Secondly, to analyse whether they change their position once the USO is developed, in the context of the dynamics of a university-based entrepreneurial ecosystem.
Resumo:
I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll a and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.
Does Landscape Context Affect Habitat Value? The Importance of Seascape Ecology in Back-reef Systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.
Resumo:
Black carbon (BC), the incomplete combustion product from biomass and fossil fuel burning, is ubiquitously found in soils, sediments, ice, water and atmosphere. Because of its polyaromatic molecular characteristic, BC is believed to contribute significantly to the global carbon budget as a slow-cycling, refractory carbon pool. However, the mass balance between global BC generation and accumulation does not match, suggesting a removal mechanism of BC to the active carbon pool, most probable in a dissolved form. The presence of BC in waters as part of the dissolved organic matter (DOM) pool was recently confirmed via ultrahigh resolution mass spectrometry, and dissolved black carbon (DBC), a degradation product of charcoal, was found in marine and coastal environments. However, information on the loadings of DBC in freshwater environments and its global riverine flux from terrestrial systems to the oceans remained unclear. The main objectives of this study were to quantify DBC in diverse aquatic ecosystems and to determine its environmental dynamics. Surface water samples were collected from aquatic environments with a spatially significant global distribution, and DBC concentrations were determined by a chemical oxidation method coupled with HPLC detection. While it was clear that biomass burning was the main sources of BC, the translocation mechanism of BC to the dissolved phase was not well understood. Data from the regional studies and the developed global model revealed a strong positive correlation between DBC and dissolved organic carbon (DOC) dynamics, indicating a co-generation and co-translocation between soil OC and BC. In addition, a DOC-assistant DBC translocation mechanism was identified. Taking advantage of the DOC-DBC correlation model, a global riverine DBC flux to oceans on the order of 26.5 Mt C yr-1 (1 Mt = 1012 g) was determined, accounting for 10.6% of the global DOC flux. The results not only indicated that DOC was an important environmental intermediate for BC transfer and storage, but also provided an estimate of a major missing link in the global BC budget. The ever increasing DBC export caused by global warming will change the marine DOM quality and may have important consequences for carbon cycling in marine ecosystem.
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
We analyzed six apiaries in several natural environments with a Mediterranean ecosystem in Madrid, central Spain, in order to understand how landscape and management characteristics may influence apiary health and bee production in the long term. We focused on five criteria (habitat quality, landscape heterogeneity, climate, management and health), as well as 30 subcriteria, and we used the analytic hierarchy process (AHP) to rank them according to relevance. Habitat quality proved to have the highest relevance, followed by beehive management. Within habitat quality, the following subcriteria proved to be most relevant: orographic diversity, elevation range and important plant species located 1.5 km from the apiary. The most important subcriteria under beehive management were honey production, movement of the apiary to a location with a higher altitude and wax renewal. Temperature was the most important subcriterion under climate, while pathogen and Varroa loads were the most significant under health. Two of the six apiaries showed the best values in the AHP analysis and showed annual honey production of 70 and 28 kg/colony. This high productivity was due primarily to high elevation range and high orographic diversity, which favored high habitat quality. In addition, one of these apiaries showed the best value for beehive management, while the other showed the best value for health, reflected in the low pathogen load and low average number of viruses. These results highlight the importance of environmental factors and good sanitary practices to maximize apiary health and honey productivity.
Resumo:
The assessment of water quality has changed markedly worldwide over the last years, especially in Europe due to the implementation of the Water Framework Directive. Fish was considered a key-element in this context and several fish-based multi-metric indices have been proposed. In this study, we propose a multi-metric index, the Estuarine Fish Assessment Index (EFAI), developed for Portuguese estuaries, designed for the overall assessment of transitional waters, which could also be applied at the water body level within an estuary. The EFAI integrates seven metrics: species richness, percentage of marine migrants, number of species and abundance of estuarine resident species, number of species and abundance of piscivorous species, status of diadromous species, status of introduced species and status of disturbance sensitive species. Fish sampling surveys were conducted in 2006, 2009 and 2010, using beam trawl, in 13 estuarine systems along the Portuguese coast. Most of the metrics presented a high variability among the transitional systems surveyed. According to the EFAI values, Portuguese estuaries presented a "Good" water quality status (except the Douro in a particular year). The assessments in different years were generally concordant, with a few exceptions. The relationship between the EFAI and the Anthropogenic Pressure Index (API) was not significant, but a negative and significant correlation was registered between the EFAI and the expert judgement pressure index, at both estuary and water body level. The ordination analysis performed to evaluate similarities among North-East Atlantic Geographical Intercalibration Group (NEAGIG) fish-based indices put in evidence four main groups: the French index, since it is substantially different from all the other indices (uses only four metrics based on densities); indices from Ireland, United Kingdom and Spain (Asturias and Cantabria); the Dutch and German indices; and the indices of Belgium. Portugal and Spain (Basque country). The need for detailed studies, including comparative approaches, on several aspects of these assessment tools, especially in what regards their response to anthropogenic pressures was stressed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
According to the Water Framework Directive (WFD) transitional waters should be differentiated according to type and, in some cases, divided into different water bodies. This raises a dilemma in trying to define parts of a continuum. In the sequence of WFD several indices have been proposed including the Estuarine Fish Assessment Index, which can be applied taking an estuary as a whole (EFAI - without water bodies division) or divided in water bodies (EFAI(WB)). The purpose of this work is to analyze the robustness of the Estuarine Fish Assessment Index, based on three different ways of dividing Portuguese estuaries into water bodies according to different criteria (criterion 1 - distance to the estuary mouth, criterion 2 - salinity and criterion 3 - morphology, salinity and human dimension as pressure and state). In this study we evaluated at which degree these three criteria could influence the ecological quality ratio (EQR) results, when the index was applied to water body level (EFAI(WB)). Also, for each estuary, the EQR(WB) results for each criterion of EFAI(WB) were combined and weighted according to the water bodies areas (EFAI overall weighted - EFAI(Ow)). Finally, it was compared if the results obtained for each criterion with the EFAI(OW) were similar to the results of the index application taking the estuary as a whole (EFAI without water bodies division). No significant differences were found in both cases, which indicated that this index is a robust method regarding the division of the estuaries in different water bodies, which is an important element of a fish-based multimetric tool for assessing estuarine ecological quality. However, in some cases, different ecological quality statuses were achieved when applying the EFAI(Ow) or the EFAI. This work addressed several aspects regarding the possible division of water bodies at the WFD context. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Procambarus clarkii is currently recorded from 16 European territories. On top of being a vector of crayfish plague, which is responsible for large-scale disappearance of native crayfish species, it causes severe impacts on diverse aquatic ecosystems, due to its rapid life cycle, dispersal capacities, burrowing activities and high population densities. The species has even been recently discovered in caves. This invasive crayfish is a polytrophic keystone species that can exert multiple pressures on ecosystems. Most studies deal with the decline of macrophytes and predation on several species (amphibians, molluscs, and macroinvertebrates), highlighting how this biodiversity loss leads to unbalanced food chains. At a management level, the species is considered as (a) a devastating digger of the water drainage systems in southern and central Europe, (b) an agricultural pest in Mediterranean territories, consuming, for example, young rice plants, and (c) a threat to the restoration of water bodies in north-western Europe. Indeed, among the high-risk species, P. clarkii consistently attained the highest risk rating. Its negative impacts on ecosystem services were evaluated. These may include the loss of provisioning services such as reductions in valued edible native species of regulatory and supporting services, inducing wide changes in ecological communities and increased costs to agriculture and water management. Finally, cultural services may be lost. The species fulfils the criteria of the Article 4(3) of Regulation (EU) No 1143/2014 of the European Parliament (species widely spread in Europe and impossible to eradicate in a cost-effective manner) and has been included in the “Union List”. Particularly, awareness of the ornamental trade through the internet must be reinforced within the European Community and import and trade regulations should be imposed to reduce the availability of this high-risk species.
Resumo:
The soil carries out a wide range of functions and it is important study the effects of land use on soil quality in order to provide most sustainable practices. Three fields trial have been considered to assess soil quality and functionality after human alteration, and to determine the power of soil enzymatic activities, biochemical indexes and mathematical model in the evaluation of soil status. The first field was characterized by conventional and organic management in which were tested also tillage effects. The second was characterized by conventional, organic and agro-ecological management. Finally, the third was a beech forest where was tested the effects of N deposition on soil organic carbon sequestration. Results highlight that both enzyme activities and biochemical indexes could be valid parameters for soil quality evaluation. Conventional management and plowing negatively affected soil quality and functionality with intensive tillage that lead to the downturn of microbial biomass and activity. Both organic and agro-ecological management revealed to be good practices for the maintenance of soil functionality with better microbial activity and metabolic efficiency. This positively affected also soil organic carbon content. At the eutrophic forest, enzyme activities and biochemical indexes positively respond to the treatments but one year of experimentation resulted to be not enough to observe variation in soil organic carbon content. Mathematical models and biochemical indicators resulted to be valid tools for assess soil quality, nonetheless it would be better including the microbial component in the mathematical model and consider more than one index if the aim of the work is to evaluate the overall soil quality and functionality. Concluding, the forest site is the richest one in terms of organic carbon, microbial biomass and activity while, the organic and the agro-ecological management seem to be the more sustainable but without taking in consideration the yield.
Resumo:
Free-living or host-associated marine microbiomes play a determinant role in supporting the functioning and biodiversity of marine ecosystems, providing essential ecological services, and promoting the health of the entire biosphere. Currently, the fast and restless increase of World’s human population strongly impacts life on Earth in the forms of ocean pollution, coastal zone destruction, overexploitation of marine resources, and climate change. Thanks to their phylogenetic, metabolic, and functional diversity, marine microbiomes represent the Earth’s biggest reservoir of solutions against the major threats that are now impacting marine ecosystems, possibly providing valuable insights for biotechnological applications to preserve the health of the ocean ecosystems. Microbial-based mitigation strategies heavily rely on the available knowledge on the specific role and composition of holobionts associated microbial communities, thus highlighting the importance of pioneer studies on microbial-mediated adaptive mechanisms in the marine habitats. In this context, we propose different models representing ecologically important, widely distributed, and habitat-forming organisms, to further investigate the ability of marine holobionts to dynamically adapt to natural environmental variations, as well as to anthropogenic stress factors. In this PhD thesis, we were able to supply the characterization of the microbial community associated with the model anthozoan cnidaria Corynactis viridis throughout a seasonal gradient, to provide critical insights into microbiome-host interactions in a biomonitoring perspective. We also dissected in details the microbial-derived mitigation strategies implemented by the benthonic anthozoan Anemonia viridis and the gastropod Patella caerulea as models of adaptation to anthropogenic stressors, in the context of bioremediation of human-impacted habitats and for the monitoring and preservation of coastal marine ecosystems, respectively. Finally, we provided a functional model of adaptation to future ocean acidification conditions by characterizing the microbial community associated with the temperate coral Balanophyllia europaea naturally living at low pH conditions, to implement microbial based actions to mitigate climate change.
Resumo:
The advent of Bitcoin suggested a disintermediated economy in which Internet users can take part directly. The conceptual disruption brought about by this Internet of Money (IoM) mirrors the cross-industry impacts of blockchain and distributed ledger technologies (DLTs). While related instances of non-centralisation thwart regulatory efforts to establish accountability, in the financial domain further challenges arise from the presence in the IoM of two seemingly opposing traits: anonymity and transparency. Indeed, DLTs are often described as architecturally transparent, but the perceived level of anonymity of cryptocurrency transfers fuels fears of illicit exploitation. This is a primary concern for the framework to prevent money laundering and the financing of terrorism and proliferation (AML/CFT/CPF), and a top priority both globally and at the EU level. Nevertheless, the anonymous and transparent features of the IoM are far from clear-cut, and the same is true for its levels of disintermediation and non-centralisation. Almost fifteen years after the first Bitcoin transaction, the IoM today comprises a diverse set of socio-technical ecosystems. Building on an analysis of their phenomenology, this dissertation shows how there is more to their traits of anonymity and transparency than it may seem, and how these features range across a spectrum of combinations and degrees. In this context, trade-offs can be evaluated by referring to techno-legal benchmarks, established through socio-technical assessments grounded on teleological interpretation. Against this backdrop, this work provides framework-level recommendations for the EU to respond to the twofold nature of the IoM legitimately and effectively. The methodology cherishes the mutual interaction between regulation and technology when drafting regulation whose compliance can be eased by design. This approach mitigates the risk of overfitting in a fast-changing environment, while acknowledging specificities in compliance with the risk-based approach that sits at the core of the AML/CFT/CPF regime.