891 resultados para Essential oil concentration
Resumo:
Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l(-1)) was achieved using soybean oil at 40 g l(-1) and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l(-1) h(-1), and the calculated Y-p/s value was 0.85 g g(-1). Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe.
Resumo:
The objective in this study was to determine growth, carcass characteristics, chemical composition and fatty acid profile of the longissimus dorsi of crossbred Boer x Saanen kids fed castor oil. Twenty-four kids (12 males and 12 females) were assigned in a randomized complete block design with two treatments and twelve replications. Blocks were defined according to weight, gender and initial age of animals for the evaluation of performance. The experimental treatments consisted of two diets containing 900 g concentrate/kg: a control diet (without addition of oil) and another containing castor oil at 30 g/kg (on a dry matter basis). After they reached an average body weight of 25 kg, males were slaughtered for the evaluation of carcass characteristics, chemical composition and fatty acid profile of the longissimus dorsi muscle. The addition of castor oil in the diet did not affect the intake of dry matter, crude protein and neutral detergent fiber; the average daily gain; and feed conversion, but increased the ether extract intake. No difference was observed for the carcass characteristics, chemical composition of the meat, concentration of C18:2 cis-9, trans-11 (CLA) and total concentration of saturated, monounsaturated and polyunsaturated fatty acids and their relations; however, there was increase in the concentrations of C18:2 trans-10, cis-12 (CLA) and C20:4 omega-6. The addition of castor oil to the diet of crossbred Boer x Saanen kids containing a high content of concentrate did not promote benefit to the characteristics evaluated.
Resumo:
This study evaluated the inhibitory activity of copaiba oil (Copaifera officinalis against the cariogenic microorganism, Streptococcus mutans. For such purpose, a minimum inhibition concentration test of copaiba oil against S. mutans was performed, using the serial dilution in broth technique, with a negative control, a positive control (0.12% chlorhexidine) and a 10% copaíba oil solution as a test. A minimum bactericidal concentration test with tubes presenting microbial inhibition was also conduced. In the minimum inhibitory concentration test, copaiba oil showed inhibition of bacterial growth at all concentrations tested up to 0.78 µL/mL of the 10% copaiba oil solution in the broth. In addition, the negative control had no inhibition, and the 0.12% chlorhexidine solution was effective up to 6.25 µL/mL in the broth. Copaiba oil showed a bacteriostatic activity against S. mutans at low concentrations, and could be a an option of phytotherapic agent to be used against cariogenic bacteria in the prevention of caries disease.
Resumo:
Iodine is an essential microelement for human health because it is a constituent of the thyroid hormones that regulate growth and development of the organism. Iodine Deficiency Disorders (IDDs) are believed to be one of the commonest preventable human health problems in the world today, according to the World Health Organization: that diseases include endemic goiter, cretinism and fetal abnormalities, among others, and they are caused by lack of iodine in the diet, that is the main source of iodine. Since iodine intake from food is not enough respect to human needs, this can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentration and/or bioavailability of mineral elements in the edible portions of crops through agricultural intervention or genetic selection (biofortification). The introduction of iodized salt is a strategy widely used and accepted to eradicate iodine deficiency, because it is an inexpensive source of stable iodine. Since the intake of salt, though iodized, must still be limited according to the risk of cardiovascular disease, so the increase of iodine content in plants for the production of functional foods is representing a field of study of particular interest and a potential market. In Italy potatoes enriched with iodine are produced by a patented procedure of agronomic biofortification for the fresh market since several years, furthermore they are recently accepted and recommended by Italian Thyroid Association, as an alternative source of iodine. Researches performed during the PhD course intended to characterize this innovative vegetables products, focusing the attention on different aspects, such as chemistry, agriculture, and quality of fresh and fried potatoes. For this purpose, lipid fraction of raw material was firstly investigated, in order to assess whether the presence of iodine in plant metabolism can affect fatty acid or sterol biosynthesis, according to the hypothesis that iodine can be bounded to polyunsaturated fatty acids of cell membranes, protecting them from peroxydation; phytosterols of plant sterol are also studied because their importance in reducing serum cholesterol, especially in potato plant sterols are also involved in synthesis of glycoalkaloid, a family of steroidal toxic secondary metabolites present in plants of the Solanaceae family. To achieve this goal chromatographic analytical techniques were employed to identify and quantify fatty acids and sterols profile of common and iodine enriched row potatoes. Another aim of the project was to evaluate the effects of frying on the quality of iodine-enriched and common potatoes. Since iodine-enriched potatoes are nowadays produced only for the fresh market, preliminary trials of cultivation under controlled environment were carried out to verify if potato varieties suitable for processing were able to absorb and accumulate iodine in the tuber. In a successive phase, these varieties were grown in the field, to evaluate their potential productivity and quality at harvest and after storage. The best potato variety to be destined for processing purposes, was finally subjected to repeated frying cycles; the effects of lipid oxidation on the composition and quality of both potatoes and frying oil bath were evaluated by chromatographic and spectrophotometric analytical techniques. Special attention were paid on volatile compounds of fried potatoes.
Resumo:
Food packaging protects food, but it can sometimes become a source of undesired contaminants. Paper based materials, despite being perceived as “natural” and safe, can contain volatile contaminants (especially if made from recycled paper) able to migrate to food, as mineral oil, phthalates and photoinitiators. Mineral oil is a petroleum product used as printing ink solvent for newspapers, magazines and packaging. From paperboard printing and from recycled fibers (if present), mineral oil migrates into food, even if dry, through the gas phase. Its toxicity is not fully evaluated, but a temporary Acceptable Daily Intake (ADI) of 0.6 mg kg-1 has been established for saturated mineral oil hydrocarbons (MOSH), while aromatic hydrocarbons (MOAH) are more toxic. Extraction and analysis of MOSH and MOAH is difficult due to the thousands of molecules present. Extraction methods for packaging and food have been optimized, then applied for a “shopping trolley survey” on over 100 Italian and Swiss market products. Instrumental analyses were performed with online LC-GC/FID. Average concentration of MOSH in paperboards was 626 mg kg-1. Many had the potential of contaminating foods exceeding temporary ADI tens of times. A long term migration study was then designed to better understand migration kinetics. Egg pasta and müesli were chosen as representative (high surface/weight ratio). They were stored at different temperatures (4, 20, 30, 40 and 60°C) and conditions (free, shelved or boxed packs) for 1 year. MOSH and MOAH kinetic curves show that migration is a fast process, mostly influenced by temperature: in egg pasta (food in direct contact with paperboard), half of MOSH is transferred to food in a week at 40°C and in 8 months at 20°C. The internal plastic bag present in müesli slowed down the startup of migration, creating a “lag time” in the curves.
Resumo:
The adsorption of particles and surfactants at water-oil interfaces has attracted continuous attention because of its emulsion stabilizing effect and the possibility to form two-dimensional materials. Herein, I studied the interfacial diffusion of single molecules and nanoparticles at water-oil interfaces using fluorescence correlation spectroscopy. rnrnFluorescence correlation spectroscopy (FCS) is a promising technique to study diffusion of fluorescent tracers in diverse conditions. This technique monitors and analyzes the fluorescence fluctuation caused by single fluorescent tracers coming in and out of a diffraction-limited observation volume “one at a time”. Thus, this technique allows a combination of high precision, high spatial resolution and low tracer concentration. rnrnIn chapter 1, I discussed some controversial questions regarding the properties of water-hydrophobic interfaces and also introduced the current progress on the stability and dynamic of single nanoparticles at water-oil interfaces. The materials and setups I used in this thesis were summarized in chapter 2. rnrnIn chapter 3, I presented a new strategy to study the properties of water-oil interfaces. The two-dimensional diffusion of isolated molecular tracers at water/n-alkane interfaces was measured using fluorescence correlation spectroscopy. The diffusion coefficients of larger tracers with a hydrodynamic radius of 4.0 nm agreed well with the values calculated from the macroscopic viscosities of the two bulk phases. However, for small molecule tracers with hydrodynamic radii of only 1.0 and 0.6 nm, notable deviations were observed, indicating the existence of an interfacial region with a reduced effective viscosity. rnrnIn chapter 4, the interfacial diffusion of nanoparticles at water-oil interfaces was investigated using FCS. In stark contrast to the interfacial diffusion of molecular tracers, that of nanoparticles at any conditions is slower than the values calculated in accordance to the surrounding viscosity. The diffusion of nanoparticles at water-oil interfaces depended on the interfacial tension of liquid-liquid interfaces, the surface properties of nanoparticles, the particle sizes and the viscosities of surrounding liquid phases. In addition, the interfacial diffusion of nanoparticles with Janus motif is even slower than that of their symmetric counterparts. Based on the experimental results I obtained, I drew some possibilities to describe the origin of nanoparticle slowdown at water-oil interfaces.
Resumo:
Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.
Resumo:
BACKGROUND Dimethyl sulfoxide (DMSO) is essential for the preservation of liquid nitrogen-frozen stem cells, but is associated with toxicity in the transplant recipient. STUDY DESIGN AND METHODS In this prospective noninterventional study, we describe the use of DMSO in 64 European Blood and Marrow Transplant Group centers undertaking autologous transplantation on patients with myeloma and lymphoma and analyze side effects after return of DMSO-preserved stem cells. RESULTS While the majority of centers continue to use 10% DMSO, a significant proportion either use lower concentrations, mostly 5 or 7.5%, or wash cells before infusion (some for selected patients only). In contrast, the median dose of DMSO given (20 mL) was much less than the upper limit set by the same institutions (70 mL). In an accompanying statistical analysis of side effects noted after return of DMSO-preserved stem cells, we show that patients in the highest quartile receiving DMSO (mL and mL/kg body weight) had significantly more side effects attributed to DMSO, although this effect was not observed if DMSO was calculated as mL/min. Dividing the myeloma and lymphoma patients each into two equal groups by age we were able to confirm this result in all but young myeloma patients in whom an inversion of the odds ratio was seen, possibly related to the higher dose of melphalan received by young myeloma patients. CONCLUSION We suggest better standardization of preservation method with reduced DMSO concentration and attention to the dose of DMSO received by patients could help reduce the toxicity and morbidity of the transplant procedure.
Resumo:
Antisense oligonucleotides (ASOs) have the potential of revolutionizing medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated with nanoparticles to enhance their stability and cellular uptake; however, one of the biggest challenges is the poor understanding of their uptake mechanism, which is needed for designing better ASOs with high activity and low toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (P-PMO), 2?Omethyl phosphorothioate (2?OMe) and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Deuchenne muscular dystrophy (DMD). We show that P-PMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. P-PMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations P-PMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in-vitro. In-vivo, the activity of P-PMO was significantly decreased in SCARA1 knock-out mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2?OMe as shown by competitive inhibition and co-localization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that P-PMO and tcDNA have higher binding profiles to the receptor compared to 2?OMe. These results demonstrate receptor-mediated uptake for a range of ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.
Resumo:
Discovery of novel drug targets may lead to improved treatment of trypanosomiasis. We characterize here 2 gene products of Trypanosoma brucei that are essential for the growth of bloodstream form (BSF) parasites, as shown by RNA interference (RNAi)-mediated down-regulation of the individual mRNAs. The primary sequences of the 2 proteins--protein encoded by gene Tb927.1.4450 (TbK1) and protein encoded by gene Tb927.9.4820 (TbK2)--indicate that both belong to the family of putative, Ca(2+)-activated potassium channels. The proteins were expressed in Xenopus laevis oocytes and their functions investigated by use of electrophysiological techniques. Only combined expression of TbK1 and TbK2 results in the formation of sizeable currents, indicating that these proteins probably assemble into a heteromeric ion channel. The current mediated by this channel shows little time and voltage dependence and displays a permeability ratio of K(+)/Na(+) of >20. The known potassium channel blocker barium inhibits this channel with a half-maximal inhibitory concentration (IC50) of 98 ± 15 μM. The membrane potential of trypanosomes was measured with a fluorescent dye. Individual RNAi-mediated down-regulation of TbK1 or TbK2 eliminates a potassium conductance in the plasma membrane of BSF. Thus, this heteromeric potassium channel is involved in the modulation of the plasma membrane potential and represents a novel drug target in T. brucei.
Resumo:
A reliable assessment of relevant substance flows is very important for environmental risk assessments and efficiency analysis of measures to reduce or avoid emissions of micropollutants like drugs to water systems. Accordingly, a detailed preparation of monitoring campaigns should include an accuracy check for the sampling configuration to prove the reliability of the monitoring results and the subsequent data processing. The accuracy of substance flow analyses is expected to be particularly weak for substances having high short-term variations of concentrations in sewage. This is especially the case linked to the observation of substance flows close to source in waste water systems. The verification of a monitoring configuration in a hospital sewer in Luxembourg is in the centre of interest of the case study presented here. A tracer test in the sewer system under observation is an essential element of the suggested accuracy check and provides valuable information for an uncertainty analysis. The results illustrate the importance of accuracy checks as an essential element of the preparation of monitoring campaigns. Moreover the study shows that continuous flow proportional sampling enables a representative observation of short-term peak loads of the iodinated x-ray contrast media iobitridol close to source.
Resumo:
The accelerating decrease of Arctic sea ice substantially changes the growth conditions for primary producers, particularly with respect to light. This affects the biochemical composition of sea ice algae, which are an essential high-quality food source for herbivores early in the season. Their high nutritional value is related to their content of polyunsaturated fatty acids (PUFAs), which play an important role for successful maturation, egg production, hatching and nauplii development in grazers. We followed the fatty acid composition of an assemblage of sea ice algae in a high Arctic fjord during spring from the early bloom stage to post bloom. Light conditions proved to be decisive in determining the nutritional quality of sea ice algae, and irradiance was negatively correlated with the relative amount of PUFAs. Algal PUFA content decreased on average by 40 % from April to June, while algal biomass (measured as particulate carbon, C) did not differ. This decrease was even more pronounced when algae were exposed to higher irradiances due to reduced snow cover. The ratio of chlorophyll a (chl a) to C, as well as the level of photoprotective pigments, confirmed a physiological adaptation to higher light levels in algae of poorer nutritional quality. We conclude that high irradiances are detrimental to sea ice algal food quality, and that the biochemical composition of sea ice algae is strongly dependent on growth conditions.
Resumo:
The limited knowledge and/or the inability to control physiological condition parameters that influence the fate of organohalogen contaminants (OHCs) has been the foremost confounding aspect in monitoring programs and health risk assessments of wild top predators in the Arctic such as the polar bear (Ursus maritimus). In the present comparative study, we used a potential surrogate Canoidea species for the East Greenland polar bear, the captive sledge dog (Canis familiaris), to investigate some factors that may influence the bioaccumulation and biotransformation of major chlorinated and brominated OHCs in adipose tissue and blood (plasma) of control (fed commercial pork fat) and exposed (fed West Greenland minke whale (Balaenoptera acutorostrata) blubber) adult female sledge dogs. Furthermore, we compared the patterns and concentrations of OHCs and their known or suggested hydroxylated (OH) metabolites (e.g., OH-PCBs) in sledge dogs with those in adipose tissue and blood (plasma) of East Greenland adult female polar bears, and blubber of their main prey species, the ringed seal (Pusa hispida). The two-year feeding regime conducted with sledge dogs led to marked differences in overall adipose tissue (and plasma) OHC residue accumulation between the control and exposed groups. Characteristic prey-to-predator OHC bioaccumulation dynamics for major PCB and PBDE congeners (patterns and concentrations) and biotransformation capacity with respect to PCB metabolite formation and OH-PCB retention distinguished, to some extent, captive sledge dogs and wild polar bears. Based on the present findings, we conclude that the use of surrogate species in toxicological investigations for species in the Canoidea family should be done with great caution, although they remain essential in the context of contaminants research with sensitive arctic top carnivore species such as the polar bear.
Resumo:
Although grassland and savanna occupy only a quarter of the world's vegetation, burning in these ecosystems accounts for roughly half the global carbon emissions from fire. However, the processes that govern changes in grassland burning are poorly understood, particularly on time scales beyond satellite records. We analyzed microcharcoal, sediments, and geochemistry in a high-resolution marine sediment core off Namibia to identify the processes that have controlled biomass burning in southern African grassland ecosystems under large, multimillennial-scale climate changes. Six fire cycles occurred during the past 170,000 y in southern Africa that correspond both in timing and magnitude to the precessional forcing of north-south shifts in the Intertropical Convergence Zone. Contrary to the conventional expectation that fire increases with higher temperatures and increased drought, we found that wetter and cooler climates cause increased burning in the study region, owing to a shift in rainfall amount and seasonality (and thus vegetation flammability). We also show that charcoal morphology (i.e., the particle's length-to-width ratio) can be used to reconstruct changes in fire activity as well as biome shifts over time. Our results provide essential context for understanding current and future grassland-fire dynamics and their associated carbon emissions.
Concentration of organic compounds in aerosols and surface waters of the East Atlantic and Antarctic
Resumo:
The data on content and composition of lipids and aliphatic hydrocarbons (HC) in aerosols and surface waters obtained during the spring-summer periods of 2001 and 2003 along the vessel route from the North Sea to the Antarctic and backwards are presented. It was shown that the distribution of organic compounds is caused by influence of zonal supply of eolian matter from land, anthropogenic, and marine autochtonous sources. Concentrations of organic compounds in the aerosols varied from 0.22 to 13.04 ng/m**3 for lipids and from 0.04 to 7.03 ng/m**3 for aliphatic HC; in surface waters, it from 9 to 84 and from 1 to 53 µg/l, respectively. There is correlation between fluxes of lithogenic fraction of the aerosols, HC, and lipids. Growth of productivity in the aquatic area increases levels of the HC in the surface waters but to a lower degree than HC supply with oil contamination.