980 resultados para Enzyme-induced Biodegradation
Resumo:
This paper describes the preparation and application of a novel bioanode for use in ethanol/O(2) biofuel cells based upon immobilization of alcohol dehydrogenase (ADH) and polyamidoamine (PAMAM) dendrimers onto carbon cloth platforms. The power density measurements indicated a direct relationship between the amount of anchored ADH and the anode power values, which increased upon enzyme loading. The power density values ranged from 0.04 to 0.28 mW cm(-2), and the highest power density was achieved with the bioanode prepared with 28 U of ADH, which provided a power density of 0.28 mW cm(-2) at 0.3 V. The latter power output values were the maximum observed, even for higher enzyme concentrations. Stability of the bioanodes was quite satisfactory, since there was no appreciable reduction of enzymatic activity during the measurements. The method of bioanode preparation described here has proven to be very effective. The PAMAM dendrimer represents a friendly environment for the immobilization of enzymes, and it is stable and capable of generating high power density compared to other immobilization methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
p53 is known to repress transcription of a number of genes, but the mechanism of p53 recruitment to these target genes is unknown. The c-myb proto-oncogene product (c-Myb) positively regulates proliferation of immature hematopoietic cells, whereas p53 blocks cell cycle progression. Here, we demonstrate that p53 inhibits c-Myb-induced transcription and transformation by directly binding to c-Myb. The ability of c-Myb to maintain the undifferentiated state of M1 cells was also suppressed by p53. p53 did not affect the ability of c-Myb to bind to DNA but formed a ternary complex with the corepressor mSin3A and c-Myb. Thus, p53 antagonizes c-Myb by recruiting mSin3A to down-regulate specific Myb target genes.
Resumo:
Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.
Resumo:
The secreted phospholipases A(2) (sPLA(2)s) are water-soluble enzymes that bind to the surface of both artificial and biological lipid bilayers and hydrolyze the membrane phospholipids. The tissue expression pattern of the human group IID secretory phospholipase A(2) (hsPLA(2)-IID) suggests that the enzyme is involved in the regulation of the immune and inflammatory responses. With an aim to establish an expression system for the hsPLA(2)-IID in Escherichia coli, the DNA-coding sequence for hsPLA(2)-IID was subcloned into the vector pET3a, and expressed as inclusion bodies in E. coli (BL21). A protocol has been developed to refold the recombinant protein in the presence of guanidinium hydrochloride, using a size-exclusion chromatography matrix followed by dilution and dialysis to remove the excess denaturant. After purification by cation-exchange chromatography, far ultraviolet circular dichroism spectra of the recombinant hsPLA(2)-IID indicated protein secondary structure content similar to the homologous human group IIA secretory phospholipase A(2). The refolded recombinant hsPLA(2)-IID demonstrated Ca(2+)-dependent hydrolytic activity, as measuring the release free fatty acid from phospholipid liposomes. This protein expression and purification system may be useful for site-directed mutagenesis experiments of the hsPLA(2)-IID which will advance our understanding of the structure-function relationship and biological effects of the protein. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of auditory information, but it is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Functional evidence relating the IC to motor behavior derives from experiments showing that activation of the IC by electrical stimulation or excitatory amino acid microinjection causes freezing, escape-like behavior, and immobility. However, the nature of this immobility is still unclear. The present study examined the influence of excitatory amino acid-mediated mechanisms in the IC on the catalepsy induced by the dopamine receptor blocker haloperidol administered systemically (1 or 0.5 mg/kg) in rats. Haloperidol-induced catalepsy was challenged with prior intracollicular microinjections of glutamate NMDA receptor antagonists, MK-801 (15 or 30 mmol/0.5 mu l) and AP7 (10 or 20 nmol/0.5 mu l), or of the NMDA receptor agonist N-methyl-D-aspartate (NMDA, 20 or 30 nmol/0.5 mu l). The results showed that intracollicular microinjection of MK-801 and AP7 previous to systemic injections of haloperidol significantly attenuated the catalepsy, as indicated by a reduced latency to step down from a horizontal bar. Accordingly, intracollicular microinjection of NMDA increased the latency to step down the bar. These findings suggest that glutamate-mediated mechanisms in the neural circuits at the IC level influence haloperidol-induced catalepsy and participate in the regulation of motor activity. (C) 2010 Published by Elsevier B.V.
Resumo:
Modulation of subjective time was examined using static images eliciting perceptions of different intensities of body movement. Undergraduate students were exposed to photographs of dancer sculptures in different dance positions for 36 sec. and asked to estimate the exposure duration. Lower movement intensities were related to shorter estimated durations. Mean durations for images of unmoving dancers were underestimated and for dancers taking a ballet step were overestimated. Temporal estimations were also related to the order of presentation of the stimuli, which suggested that subjective time estimations were influenced by the experimental context. Subjective time is related not only to the visual perception of moving images, but also of elicited perceptions of movement in static images, suggesting an embodiment effect on subjective time estimation.
Resumo:
Withdrawal from morphine leads to the appearance of extreme anxiety accompanied of several physical disturbances, most of them linked to the activation of brainstem regions such as the locus coeruleus, ventral tegmental area, hypothalamic nuclei and periaqueductal grey (PAG). As anxiety remains one of the main components of morphine withdrawal the present study aimed to evaluating the influence of the dorsal aspects of the PAG on the production of this state, since this structure is well-known to be involved in defensive behaviour elicited by anxiety-evoking stimuli. Different groups of animals were submitted to 10 days of i.p. morphine injections, challenged 2 h after with an i.p. injection of naloxone (0.1 mg/kg), and submitted to the plus-maze, open-field and light-dark transition tests. The effects of morphine withdrawal on anxiety-induced Fos immunolabelling were evaluated in four animals that passed by the light-dark transition test randomly chosen for Fos-protein analysis. Besides the PAG, Fos neural expression was conducted in other brain regions involved in the expression of anxiety-related behaviours. Our results showed that morphine withdrawn rats presented enhanced anxiety accompanied of few somatic symptoms. Increased Fos immunolabelling was noted in brain regions well-known to modulate these states as the prelimbic cortex, nucleus accumbens, amygdala and paraventricular hypothalamus. Increased Fos labelling was also observed in the ventral and dorsal aspects of the PAG, a region involved in anxiety-related processes suggesting that this region could be a common neural substrate enlisted during anxiety evoked by dangerous stimuli as well as those elicited by opiate withdrawal. (c) 2008 Elsevier Inc. All rights reserved,
Resumo:
Foraging adults of phytophagous insects are attracted by host-plant volatiles and supposedly repelled by volatiles from non-host plants. In behavioural control of pest insects, chemicals derived from non-host plants applied to crops are expected to repel searching adults and thereby reduce egg laying. How experience by searching adults of non-host volatiles affects their subsequent searching and oviposition behaviour has been rarely tested. In laboratory experiments, we examined the effect of experience of a non-host-plant extract on the oviposition behaviour of the diamondback moth (DBM), Plutella xylostella, a specialist herbivore of cruciferous plants. Naive ovipositing DBM females were repelled by an extract of dried leaves of Chrysanthemum morifolium, a non-host plant of DBM, but experienced females were not repelled. Instead they were attracted by host plants treated with the non-host-plant extract and laid a higher proportion of eggs on treated than on untreated host plants. Such behavioural changes induced by experience could lead to host-plant range expansion in phytophagous insects and play an important role in determining outcome for pest management of some behavioural manipulation methods.
Resumo:
This study investigated the organic and inorganic constituents of healthy leaves and Candidatus Liberibacter asiaticus (CLas)-inoculated leaves of citrus plants. The bacteria CLas are one of the causal agents of citrus greening (or Huanglongbing) and its effect on citrus leaves was investigated using laser-induced breakdown spectroscopy (LIBS) combined with chemometrics. The information obtained from the LIBS spectra profiles with chemometrics analysis was promising for the construction of predictive models to identify healthy and infected plants. The major, macro- and microconstituents were relevant for differentiation of the sample conditions. The models were then applied to different inoculation times (from 1 to 8 months). The models were effective in the classification of 82-97% of the diseased samples with a 95% significance level. The novelty of this method was in the fingerprinting of healthy and diseased plants based on their organic and inorganic contents. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Predictions of water table fluctuations in coastal aquifers are needed for numerous coastal and water resources engineering problems. Most previous investigations have been based on the Boussinesq equation for the case of a vertical beach. In this note an analytical solution based on shallow water expansion for the spring- neap tide- induced water table fluctuations in a coastal aquifer is presented. Unlike most previous investigations, multitidal signals are considered with a sloping coastal aquifer. The new solution is verified by comparing with field observations from Ardeer, Scotland. On the basis of the analytical approximation the influences of higher- order components on water table elevation are examined first. Then, a parametric study has been performed to investigate the effects of the amplitude ratio (lambda), frequency ratio (omega), and phases (delta(1) and delta(2)) on the tide- induced water table fluctuations in a sloping sandy beach.
Resumo:
Substance P (SP) is a neuropeptide that can modulate inflammatory mediator release through activation of NK(1) receptors (NK(1)R). Some studies have also suggested the involvement of SP in lipopolysaccharide (LPS)-induced fever. However, the precise contribution of this neuropeptide to the pathways activated during fever is unknown. In this study we investigated the effect of a selective NK(1)R antagonist, SR140333B, on the febrile response induced by LPS and cytokines. Our results show that the systemic injection of SR140333B did not modify the fever induced by LPS at a dose that is able to reduce protein extravasation induced by SP in the skin. On the other hand, intracerebroventricular administration of 5R140333B significantly reduced the fever induced by peripheral injection of LPS. These data emphasize an important role for SP in the central nervous system during the febrile response to LPS, and are reinforced by the fact that intracerebroventricular injection of SP also induced fever in a dose-dependent manner in captopril-treated rats. Considering that the febrile response can result from the generation of several endogenous pyrogens, among them interleukin (IL)-1 beta and macrophage inflammatory protein-1 alpha (CCL3/MIP-1 alpha), we also examined the effect of SR140333B on the fever induced by these cytokines which act through prostaglandin-dependent and independent mechanisms, respectively. Surprisingly, SR140333B did not modify the febrile response to IL-1 beta or CCL3/MIP-1 alpha. Altogether these data suggest that the central action of SP is essential for LPS-, but not for IL-1 beta- or CCL3/MIP-1 alpha-induced fever. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In sub-humid South India, recent studies have shown that black soil areas (Vertisols and vertic Intergrades), located on flat valley bottoms, have been rejuvenated through the incision of streambeds, inducing changes in the pedoclimate and soil transformation. Joint pedological, geochemical and geophysical investigations were performed in order to better understand the ongoing processes and their contribution to the chemistry of local rivers. The seasonal rainfall causes cycles of oxidation and reduction in a perched watertable at the base of the black soil, while the reduced solutions are exported through a loamy sand network. This framework favours a ferrolysis process, which causes low base saturation and protonation of clay, leading to the weathering of 2:1 then 1:1 clay minerals. Maximum weathering conditions occur at the very end of the wet season, just before disappearance of the perched watertable. Therefore, the by-products of soil transformation are partially drained off and calcareous nodules, then further downslope, amorphous silica precipitate upon soil dehydration. The ferrolysed area is fringing the drainage system indicating that its development has been induced by the streambed incision. The distribution of (14)C ages of CaCO(3) nodules suggests that the ferrolysis process started during the late Holocene, only about 2 kyr B.P. at the studied site and about 5 kyr B.P. at the watershed outlet. The results of this study are applied to an assessment of the physical erosion rate (4.8x10(-3) m/kyr) since the recent reactivation of the erosion process. (C) 2010 Elsevier B.V. All rights reserved.