885 resultados para Entire functions
Resumo:
Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken
Resumo:
We extend all elementary functions from the real to the transreal domain so that they are defined on division by zero. Our method applies to a much wider class of functions so may be of general interest.
Resumo:
Transreal arithmetic is total, in the sense that the fundamental operations of addition, subtraction, multiplication and division can be applied to any transreal numbers with the result being a transreal number [1]. In particular division by zero is allowed. It is proved, in [3], that transreal arithmetic is consistent and contains real arithmetic. The entire set of transreal numbers is a total semantics that models all of the semantic values, that is truth values, commonly used in logics, such as the classical, dialetheaic, fuzzy and gap values [2]. By virtue of the totality of transreal arithmetic, these logics can be implemented using total, arithmetical functions, specifically operators, whose domain and counterdomain is the entire set of transreal numbers
Resumo:
IntFOLD is an independent web server that integrates our leading methods for structure and function prediction. The server provides a simple unified interface that aims to make complex protein modelling data more accessible to life scientists. The server web interface is designed to be intuitive and integrates a complex set of quantitative data, so that 3D modelling results can be viewed on a single page and interpreted by non-expert modellers at a glance. The only required input to the server is an amino acid sequence for the target protein. Here we describe major performance and user interface updates to the server, which comprises an integrated pipeline of methods for: tertiary structure prediction, global and local 3D model quality assessment, disorder prediction, structural domain prediction, function prediction and modelling of protein-ligand interactions. The server has been independently validated during numerous CASP (Critical Assessment of Techniques for Protein Structure Prediction) experiments, as well as being continuously evaluated by the CAMEO (Continuous Automated Model Evaluation) project. The IntFOLD server is available at: http://www.reading.ac.uk/bioinf/IntFOLD/
Resumo:
Objectives Extending the roles of nurses, pharmacists and allied health professionals to include prescribing has been identified as one way of improving service provision. In the UK, over 50 000 non-medical healthcare professionals are now qualified to prescribe. Implementation of non-medical prescribing ( NMP) is crucial to realise the potential return on investment. The UK Department of Health recommends a NMP lead to be responsible for the implementation of NMP within organisations. The aim of this study was to explore the role of NMP leads in organisations across one Strategic Health Authority (SHA) and to inform future planning with regards to the criteria for those adopting this role, the scope of the role and factors enabling the successful execution of the role. Methods Thirty-nine NMP leads across one SHA were approached. Semi-structured telephone interviews were conducted. Issues explored included the perceived role of the NMP lead, safety and clinical governance procedures and facilitators to the role. Transcribed audiotapes were coded and analysed using thematic analytical techniques. Key findings In total, 27/39 (69.2%) NMP leads were interviewed. The findings highlight the key role that the NMP lead plays with regards to the support and development of NMP within National Health Service trusts. Processes used to appoint NMP leads lacked clarity and varied between trusts. Only two NMP leads had designated or protected time for their role. Strategic influence, operational management and clinical governance were identified as key functions. Factors that supported the role included organisational support, level of influence and dedicated time. Conclusion The NMP lead plays a significant role in the development and implementation of NMP. Clear national guidance is needed with regards to the functions of this role, the necessary attributes for individuals recruited into this post and the time that should be designated to it. This is important as prescribing is extended to include other groups of non-medical healthcare professionals.
Resumo:
The ten-volume edition of The Collected Works of Thomas Heywood, forthcoming from Oxford University Press from 2015 to 2022, will attempt to place Heywood’s plays, poetry, and prose back where they belong: at the centre of the study of early modern English literature, drama, and theatre history. Especially as an actor, playwright, reviser, editor, and historical chronicler, Heywood had the longest and widest-ranging career of his contemporaries and thus can reveal how sixteenth- and seventeenth-century authors and theatrical and literary audiences came to see the practice and production of drama.
Resumo:
This brief proposes a new method for the identification of fractional order transfer functions based on the time response resulting from a single step excitation. The proposed method is applied to the identification of a three-dimensional RC network, which can be tailored in terms of topology and composition to emulate real time systems governed by fractional order dynamics. The results are in excellent agreement with the actual network response, yet the identification procedure only requires a small number of coefficients to be determined, demonstrating that the fractional order modelling approach leads to very parsimonious model formulations.
Resumo:
Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their ‘resilience’) is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin.
Resumo:
In this paper we study the problem of maximizing a quadratic form 〈Ax,x〉 subject to ‖x‖q=1, where A has matrix entries View the MathML source with i,j|k and q≥1. We investigate when the optimum is achieved at a ‘multiplicative’ point; i.e. where x1xmn=xmxn. This turns out to depend on both f and q, with a marked difference appearing as q varies between 1 and 2. We prove some partial results and conjecture that for f multiplicative such that 0
Resumo:
The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions-specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.
Resumo:
Cosmic shear requires high precision measurement of galaxy shapes in the presence of the observational point spread function (PSF) that smears out the image. The PSF must therefore be known for each galaxy to a high accuracy. However, for several reasons, the PSF is usually wavelength dependent; therefore, the differences between the spectral energy distribution of the observed objects introduce further complexity. In this paper, we investigate the effect of the wavelength dependence of the PSF, focusing on instruments in which the PSF size is dominated by the diffraction limit of the telescope and which use broad-band filters for shape measurement. We first calculate biases on cosmological parameter estimation from cosmic shear when the stellar PSF is used uncorrected. Using realistic galaxy and star spectral energy distributions and populations and a simple three-component circular PSF, we find that the colour dependence must be taken into account for the next generation of telescopes. We then consider two different methods for removing the effect: (i) the use of stars of the same colour as the galaxies and (ii) estimation of the galaxy spectral energy distribution using multiple colours and using a telescope model for the PSF. We find that both of these methods correct the effect to levels below the tolerances required for per cent level measurements of dark energy parameters. Comparison of the two methods favours the template-fitting method because its efficiency is less dependent on galaxy redshift than the broad-band colour method and takes full advantage of deeper photometry.
Resumo:
We estimate crustal structure and thickness of South America north of roughly 40 degrees S. To this end, we analyzed receiver functions from 20 relatively new temporary broadband seismic stations deployed across eastern Brazil. In the analysis we include teleseismic and some regional events, particularly for stations that recorded few suitable earthquakes. We first estimate crustal thickness and average Poisson`s ratio using two different stacking methods. We then combine the new crustal constraints with results from previous receiver function studies. To interpolate the crustal thickness between the station locations, we jointly invert these Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh waveforms for a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a positive correlation between crustal thickness and geologic age is derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. The new Moho map also reveals an anomalously deep Moho beneath the oldest core of the Amazonian Craton.