815 resultados para Enlargement
Resumo:
The transcription factor NF-κB regulates expression of genes that are involved in inflammation, immune response, viral infection, cell survival, and division. However, the role of NF-κB in hypertrophic growth of terminally differentiated cardiomyocytes is unknown. Here we report that NF-κB activation is required for hypertrophic growth of cardiomyocytes. In cultured rat primary neonatal ventricular cardiomyocytes, the nuclear translocation of NF-κB and its transcriptional activity were stimulated by several hypertrophic agonists, including phenylephrine, endothelin-1, and angiotensin II. The activation of NF-κB was inhibited by expression of a “supersuppressor” IκBα mutant that is resistant to stimulation-induced degradation and a dominant negative IκB kinase (IKKβ) mutant that can no longer be activated by phosphorylation. Furthermore, treatment with phenylephrine induced IκBα degradation in an IKK-dependent manner, suggesting that NF-κB is a downstream target of the hypertrophic agonists. Importantly, expression of the supersuppressor IκBα mutant or the dominant negative IKKβ mutant blocked the hypertrophic agonist-induced expression of the embryonic gene atrial natriuretic factor and enlargement of cardiomyocytes. Conversely, overexpression of NF-κB itself induced atrial natriuretic factor expression and cardiomyocyte enlargement. These findings suggest that NF-κB plays a critical role in the hypertrophic growth of cardiomyocytes and may serve as a potential target for the intervention of heart disease.
Resumo:
Volumetric studies in a range of animals (London taxi-drivers, polygynous male voles, nest-parasitic female cowbirds, and a number of food-storing birds) have shown that the size of the hippocampus, a brain region essential to learning and memory, is correlated with tasks involving an extra demand for spatial learning and memory. In this paper, we report the quantitative advantage that food storers gain from such an enlargement. Coal tits (Parus ater) a food-storing species, performed better than great tits (Parus major), a nonstoring species, on a task that assessed memory persistence but not on a task that assessed memory resolution or on one that tested memory capacity. These results show that the advantage to the food-storing species associated with an enlarged hippocampus is one of memory persistence.
Resumo:
The possibility that Bright Yellow 2 (BY2) tobacco (Nicotiana tabacum L.) suspension-cultured cells possess an expansin-mediated acid-growth mechanism was examined by multiple approaches. BY2 cells grew three times faster upon treatment with fusicoccin, which induces an acidification of the cell wall. Exogenous expansins likewise stimulated BY2 cell growth 3-fold. Protein extracted from BY2 cell walls possessed the expansin-like ability to induce extension of isolated walls. In western-blot analysis of BY2 wall protein, one band of 29 kD was recognized by anti-expansin antibody. Six different classes of α-expansin mRNA were identified in a BY2 cDNA library. Northern-blot analysis indicated moderate to low abundance of multiple α-expansin mRNAs in BY2 cells. From these results we conclude that BY2 suspension-cultured cells have the necessary components for expansin-mediated cell wall enlargement.
Resumo:
We studied aquaporins in maize (Zea mays), an important crop in which numerous studies on plant water relations have been carried out. A maize cDNA, ZmTIP1, was isolated by reverse transcription-coupled PCR using conserved motifs from plant aquaporins. The derived amino acid sequence of ZmTIP1 shows 76% sequence identity with the tonoplast aquaporin γ-TIP (tonoplast intrinsic protein) from Arabidopsis. Expression of ZmTIP1 in Xenopus laevis oocytes showed that it increased the osmotic water permeability of oocytes 5-fold; this water transport was inhibited by mercuric chloride. A cross-reacting antiserum made against bean α-TIP was used for immunocytochemical localization of ZmTIP1. These results indicate that this and/or other aquaporins is abundantly present in the small vacuoles of meristematic cells. Northern analysis demonstrated that ZmTIP1 is expressed in all plant organs. In situ hybridization showed a high ZmTIP1 expression in meristems and zones of cell enlargement: tips of primary and lateral roots, leaf primordia, and male and female inflorescence meristems. The high ZmTIP1 expression in meristems and expanding cells suggests that ZmTIP1 is needed (a) for vacuole biogenesis and (b) to support the rapid influx of water into vacuoles during cell expansion.
Resumo:
To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement.
Resumo:
Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.
Resumo:
Graves disease is an autoimmune thyroid disease characterized by the presence of antibodies against the thyrotropin receptor (TSHR), which stimulate the thyroid to cause hyperthyroidism and/or goiter. By immunizing mice with fibroblasts transfected with both the human TSHR and a major histocompatibility complex class II molecule, but not by either alone, we have induced immune hyperthyroidism that has the major humoral and histological features of Graves disease: stimulating TSHR antibodies, thyrotropin binding inhibiting immunoglobulins, which are different from the stimulating TSHR antibodies, increased thyroid hormone levels, thyroid enlargement, thyrocyte hypercellularity, and thyrocyte intrusion into the follicular lumen. The results suggest that the aberrant expression of major histocompatibility complex class II molecules on cells that express a native form of the TSHR can result in the induction of functional anti-TSHR antibodies that stimulate the thyroid. They additionally suggest that the acquisition of antigen-presenting ability on a target cell containing the TSHR can activate T and B cells normally present in an animal and induce a disease with the major features of autoimmune Graves.
Resumo:
The Tsc2 gene, which is mutationally inactivated in the germ line of some families with tuberous sclerosis, encodes a large, membrane-associated GTPase activating protein (GAP) designated tuberin. Studies of the Eker rat model of hereditary cancer strongly support the role of Tsc2 as a tumor suppressor gene. In this study, the biological activity of tuberin was assessed by expressing the wild-type Tsc2 gene in tumor cell lines lacking functional tuberin and also in rat fibroblasts with normal levels of endogenous tuberin. The colony forming efficiency of Eker rat-derived renal carcinoma cells was significantly reduced following reintroduction of wild-type Tsc2. Tumor cells expressing the transfected Tsc2 gene became more anchorage-dependent and lost their ability to form tumors in severe combined immunodeficient mice. At the cellular level, restoration of tuberin expression caused morphological changes characterized by enlargement of the cells and increased contact inhibition. As with the full-length Tsc2 gene, a clone encoding only the C terminus of tuberin (amino acids 1049-1809, including the GAP domain) was capable of reducing both colony formation and in vivo tumorigenicity when transfected into the Eker rat tumor cells. In normal Rat1 fibroblasts, conditional overexpression of tuberin also suppressed colony formation and cell growth in vitro. These results provide direct experimental evidence for the tumor suppressor function of Tsc2 and suggest that the tuberin C terminus plays an important role in this activity.
Resumo:
We have used a "plug and socket" targeting technique to generate a mouse model of beta 0-thalassemia in which both the b1 and b2 adult globin genes have been deleted. Mice homozygous for this deletion (Hbbth-3/Hbbth-3) die perinatally, similar to the most severe form of Cooley anemia in humans. Mice heterozygous for the deletion appear normal, but their hematologic indices show characteristics typical of severe thalassemia, including dramatically decreased hematocrit, hemoglobin, red blood cell counts, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration, as well as dramatically increased reticulocyte counts, serum bilirubin concentrations, and red cell distribution widths. Tissue and organ damage typical of beta-thalassemia, such as bone deformities and splenic enlargement due to increased hematopoiesis, are also seen in the heterozygous animals, as is spontaneous iron overload in the spleen, liver, and kidneys. The mice homozygous for the b1 and b2 deletions should be of great value in developing therapies for the treatment of thalassemias in utero. The heterozygous animals will be useful for studying the pathophysiology of thalassemias and have the potential of generating a model of sickle cell anemia when mated with appropriate transgenic animals.
Resumo:
The binding of the exchangeable apolipoprotein apolipophorin III (apoLp-III) to an egg phosphatidylcholine bilayer as a function of the concentration of diacylglycerol (DG) in the bilayer was studied by surface plasmon resonance spectroscopy. At a DG concentration of 2 mol % in the bilayer, the binding of apoLp-III reached saturation. Under saturating conditions, apoLp-III forms a closely packed monolayer approximately 55 A thick, in which each molecule of protein occupies approximately 500 A2 at the membrane surface. These dimensions are consistent with the molecular size of the apoLp-III molecule determined by x-ray crystallography, if apoLp-III binds to the bilayer with the long axis of the apoLp-III normal to the membrane surface. In the absence of protein, the overall structure of the lipid bilayer was not significantly changed up to 2.5 mol% DG. However, at 4 and 6 mol % DG, the presence of nonbilayer structures was observed. The addition of apoLp-III to a membrane containing 6 mol % DG promoted the formation of large lipid-protein complexes. These data support a two-step sequential binding mechanism for binding of apoLp-III to a lipid surface. The first step is a recognition process, consisting of the adsorption of apoLp-III to a nascent hydrophobic defect in the phospholipid bilayer caused by the presence of DG. This recognition process might depend on the presence of a hydrophobic sensor located at one of the ends of the long axis of the apoLp-III molecule but would be consolidated through H-bond and electrostatic interactions. Once primary binding is achieved, subsequent enlargement of the hydrophobic defect in the lipid surface would trigger the unfolding of the apolipoprotein and binding via the amphipathic alpha-helices. This two-step sequential binding mechanism could be a general mechanism for all exchangeable apolipoproteins. A possible physiological role of the ability of apoLp-III to bind to lipid structures in two orientations is also proposed.
Resumo:
Acetylcholine, one of the main neurotransmitters in the nervous system, is synthesized by the enzyme choline acetyltransferase (ChAT; acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). The molecular mechanisms controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo are largely unknown. A previous report showed that a 3800-bp, but not a 1450-bp, 5' flanking segment from the rat ChAT gene promoter directed cell type-specific expression of a reporter gene in cholinergic cells in vitro. Now we have characterized a distal regulatory region of the ChAT gene that confers cholinergic specificity on a heterologous downstream promoter in a cholinergic cell line and in transgenic mice. A 2342-bp segment from the 5' flanking region of the ChAT gene behaved as an enhancer in cholinergic cells but as a repressor in noncholinergic cells in an orientation-independent manner. Combined with a heterologous basal promoter, this fragment targeted transgene expression to several cholinergic regions of the central nervous system of transgenic mice, including basal forebrain, cortex, pons, and spinal cord. In eight independent transgenic lines, the pattern of transgene expression paralleled qualitatively and quantitatively that displayed by endogenous ChAT mRNA in various regions of the rat central nervous system. In the lumbar enlargement of the spinal cord, 85-90% of the transgene expression was targeted to the ventral part of the cord, where cholinergic alpha-motor neurons are located. Transgene expression in the spinal cord was developmentally regulated and responded to nerve injury in a similar way as the endogenous ChAT gene, indicating that the 2342-bp regulatory sequence contains elements controlling the plasticity of the cholinergic phenotype in developing and injured neurons.
Resumo:
Esta dissertação é resultado de uma pesquisa-intervenção cuja produção de dados ocorreu com o Grupo Condutor Regional da Rede Cegonha (GCR) no DRS III de Araraquara - SP, parte do Projeto de Pesquisa para o Sistema Único de Saúde (PPSUS): O processo de implantação da rede de atenção à saúde materno infantil no DRS III de Araraquara: a atenção básica como ordenadora da atenção em rede. Nosso objetivo foi compreender este coletivo como espaço de Educação Permanente em Saúde (EPS) para a institucionalização dessa Rede, e também caracterizar a EPS no território de abrangência deste DRS, compreender suas fragilidades-potencialidades e também os processos de EPS produzidos no interior do GCR para a implementação da Rede Cegonha (RC), diante de desafios como a redução da morbimortalidade materno infantil e o atendimento integral e humanizado a mulheres e crianças. Esta pesquisa qualitativa compreendeu a análise de documentos e a pesquisa-intervenção, utilizando método cartográfico, e a produção dos dados ocorreu no ano de 2014 com os integrantes do GCR e outros pesquisadores PPSUS. As análises tiveram como referenciais o Processo de Trabalho em Saúde e conceitos do movimento institucionalista, das correntes da Análise Institucional e da Esquizoanálise. Esta pesquisa de cunho cartográfico explorou o contexto sócio-histórico da EPS e da RC no DRS III e paisagens que compõem o mapa do aprendizado no que chamamos Rede-rizoma, entremeadas por análises de implicações e aprendizados na experiência, tanto de construção da pesquisa como da RC. Nos planos do rizoma houve momentos de aprendizado significativo, ecos nos municípios, interferências da pesquisa-intervenção, dentre outros componentes de tessitura da rede que envolveram seus atores, seus pontos de conexão, de tensão, de apoio. Nesse emaranhado quente e frio, interessou-nos explorar as singularidades do encontro e os movimentos de forças instituintes e do instituído com o compromisso de entender a EPS como ferramenta de trabalho para a institucionalização da RC. Percebemos a existência de microprocessos de institucionalização disparados no cotidiano do GCR, caracteristicamente paralisantes e mobilizadores, como a importância da participação social, ainda tímida, as tensões com a imobilidade municipal, as fragilidades-potencialidades dos recursos humanos e financeiros, e também resultados que refletem em alargamento e participação de novos atores, cooperação intermunicipal, fortalecimento dos Grupos Condutores Municipais da rede cegonha e uma gestão estadual disposta a deflagrar processos de formação participativos. Trata-se de movimentos que se revelaram em implicações de múltiplas bifurcações e em processos de EPS que se fazem de forma mutante, conformando a rede-rizoma
Resumo:
We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal–dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal–dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.
Resumo:
This paper studies the fracturing process in low-porous rocks during uniaxial compressive tests considering the original defects and the new mechanical cracks in the material. For this purpose, five different kinds of rocks have been chosen with carbonate mineralogy and low porosity (lower than 2%). The characterization of the fracture damage is carried out using three different techniques: ultrasounds, mercury porosimetry and X-ray computed tomography. The proposed methodology allows quantifying the evolution of the porous system as well as studying the location of new cracks in the rock samples. Intercrystalline porosity (the smallest pores with pore radius < 1 μm) shows a limited development during loading, disappearing rapidly from the porosimetry curves and it is directly related to the initial plastic behaviour in the stress–strain patterns. However, the biggest pores (corresponding to the cracks) suffer a continuous enlargement until the unstable propagation of fractures. The measured crack initiation stress varies between 0.25 σp and 0.50 σp for marbles and between 0.50 σp and 0.85 σp for micrite limestone. The unstable propagation of cracks is assumed to occur very close to the peak strength. Crack propagation through the sample is completely independent of pre-existing defects (porous bands, stylolites, fractures and veins). The ultrasonic response in the time-domain is less sensitive to the fracture damage than the frequency-domain. P-wave velocity increases during loading test until the beginning of the unstable crack propagation. This increase is higher for marbles (between 15% and 30% from initial vp values) and lower for micrite limestones (between 5% and 10%). When the mechanical cracks propagate unstably, the velocity stops to increase and decreases only when rock damage is very high. Frequency analysis of the ultrasonic signals shows clear changes during the loading process. The spectrum of treated waveforms shows two main frequency peaks centred at low (~ 20 kHz) and high (~ 35 kHz) values. When new fractures appear and grow the amplitude of the high-frequency peak decreases, while that of the low-frequency peak increases. Besides, a slight frequency shift is observed towards higher frequencies.