837 resultados para Energy consumption.
Resumo:
The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer-controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power-saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.
Resumo:
The problem of topology control is to assign per-node transmission power such that the resulting topology is energy efficient and satisfies certain global properties such as connectivity. The conventional approach to achieve these objectives is based on the fundamental assumption that nodes are socially responsible. We examine the following question: if nodes behave in a selfish manner, how does it impact the overall connectivity and energy consumption in the resulting topologies? We pose the above problem as a noncooperative game and use game-theoretic analysis to address it. We study Nash equilibrium properties of the topology control game and evaluate the efficiency of the induced topology when nodes employ a greedy best response algorithm. We show that even when the nodes have complete information about the network, the steady-state topologies are suboptimal. We propose a modified algorithm based on a better response dynamic and show that this algorithm is guaranteed to converge to energy-efficient and connected topologies. Moreover, the node transmit power levels are more evenly distributed, and the network performance is comparable to that obtained from centralized algorithms.
Resumo:
The potential for an autonomous wave-powered desalination system is considered and it is identified that the most promising configuration is a reverse osmosis (RO) plant utilising a pressure exchanger-intensifier for energy recovery. A numerical model of the RO plant with a pressure exchanger-intensifier is developed that shows that a specific energy consumption of less than 2.0 kW h/m3 over a wide range of sea-water feed conditions, making it particularly suitable for use with a variable power source such as wave energy. A numerical model of the combined wave-power and desalination plant is also developed that shows that it is possible to supply the desalination plant with sea-water directly pressurised by the wave energy converter, eliminating the cost and energy losses associated with converting the energy into electricity and back to pressurised water. For a typical sea-state the specific hydraulic energy consumption of the desalination plant is estimated to be 1.85 kW h/m3 whilst maintaining a recovery-ratio of less than 25 to 35% to avoid the need for chemical pre-treatment to eliminate scaling problems. It is suggested that the economic potential for wave-powered desalination depends on these energy and cost savings more than compensating for the reduction in membrane life that occurs with variable feed conditions.
Resumo:
The simultaneous heat and moisture transfer in the building envelope has an important influence on the indoor environment and the overall performance of buildings. In this paper, a model for predicting whole building heat and moisture transfer was presented. Both heat and moisture transfer in the building envelope and indoor air were simultaneously considered; their interactions were modeled. The coupled model takes into account most of the main hygrothermal effects in buildings. The coupled system model was implemented in MATLAB-Simulink, and validated by using a series of published testing tools. The new program was applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption under different climates. The results show that the use of more detailed simulation routines can result in improvements to the building's design for energy optimisation through the choice of proper hygroscopic materials, which would not be indicated by simpler calculation techniques.
Resumo:
The coupled heat, air and moisture transfer between building envelopes and indoor air is complicated, and has a significant influence on the indoor environment and the energy performance of buildings. In the paper, a model for predicting coupled multi-zone hygrothermal-airflow transfer is presented. Both heat and moisture transfer in the building envelope and multi-zone indoor airflow are simultaneously considered; their interactions are modeled. The coupled system model is implemented into Matlab–Simulink, and is validated by using a series of testing tools and experiments. The new program is applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption in different climates (hot-humid, temperate and hot-dry climates). The results show that not accounting for hygrothermal effects in modeling will result in overestimation of energy costs for hot and humid climate situations and possible over sizing of plant leading to inefficient operation.
Resumo:
The provision of security in mobile ad hoc networks is of paramount importance due to their wireless nature. However, when conducting research into security protocols for ad hoc networks it is necessary to consider these in the context of the overall system. For example, communicational delay associated with the underlying MAC layer needs to be taken into account. Nodes in mobile ad hoc networks must strictly obey the rules of the underlying MAC when transmitting security-related messages while still maintaining a certain quality of service. In this paper a novel authentication protocol, RASCAAL, is described and its performance is analysed by investigating both the communicational-related effects of the underlying IEEE 802.11 MAC and the computational-related effects of the cryptographic algorithms employed. To the best of the authors' knowledge, RASCAAL is the first authentication protocol which proposes the concept of dynamically formed short-lived random clusters with no prior knowledge of the cluster head. The performance analysis demonstrates that the communication losses outweigh the computation losses with respect to energy and delay. MAC-related communicational effects account for 99% of the total delay and total energy consumption incurred by the RASCAAL protocol. The results also show that a saving in communicational energy of up to 12.5% can be achieved by changing the status of the wireless nodes during the course of operation. Copyright (C) 2009 G. A. Safdar and M. P. O'Neill (nee McLoone).
Resumo:
Seasonal and day-to-day variations in travel behaviour and performance of private passenger vehicles can be partially explained by changes in weather conditions. Likewise, in the electricity sector, weather affects energy demand. The impact of weather conditions on private passenger vehicle performance, usership statistics and travel behaviour has been studied for conventional, internal combustion engine, vehicles. Similarly, weather-driven variability in electricity demand and generation has been investigated widely. The aim of these analyses in both sectors is to improve energy efficiency, reduce consumption in peak hours and reduce greenhouse gas emissions. However, the potential effects of seasonal weather variations on electric vehicle usage have not yet been investigated. In Ireland the government has set a target requiring 10% of all vehicles in the transport fleet to be powered by electricity by 2020 to meet part of its European Union obligations to reduce greenhouse gas emissions and increase energy efficiency. This paper fills this knowledge gap by compiling some of the published information available for internal combustion engine vehicles and applying the lessons learned and results to electric vehicles with an analysis of historical weather data in Ireland and electricity market data in a number of what-if scenarios. Areas particularly impacted by weather conditions are battery performance, energy consumption and choice of transportation mode by private individuals.
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.
Resumo:
In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured.
Resumo:
Branch prediction feeds a speculative execution processor core with instructions. Branch mispredictions are inevitable and have negative effects on performance and energy consumption. With the advent of highly accurate conditional branch predictors, nonconditional branch instructions are gaining importance.
Resumo:
Embedded processors are used in numerous devices executing dedicated applications. This setting makes it worthwhile to optimize the processor to the application it executes, in order to increase its power-efficiency. This paper proposes to enhance direct mapped data caches with automatically tuned randomized set index functions to achieve that goal. We show how randomization functions can be automatically generated and compare them to traditional set-associative caches in terms of performance and energy consumption. A 16 kB randomized direct mapped cache consumes 22% less energy than a 2-way set-associative cache, while it is less than 3% slower. When the randomization function is made configurable (i.e., it can be adapted to the program), the additional reduction of conflicts outweighs the added complexity of the hardware, provided there is a sufficient amount of conflict misses.
Resumo:
In a dynamic reordering superscalar processor, the front-end fetches instructions and places them in the issue queue. Instructions are then issued by the back-end execution core. Till recently, the front-end was designed to maximize performance without considering energy consumption. The front-end fetches instructions as fast as it can until it is stalled by a filled issue queue or some other blocking structure. This approach wastes energy: (i) speculative execution causes many wrong-path instructions to be fetched and executed, and (ii) back-end execution rate is usually less than its peak rate, but front-end structures are dimensioned to sustained peak performance. Dynamically reducing the front-end instruction rate and the active size of front-end structure (e.g. issue queue) is a required performance-energy trade-off. Techniques proposed in the literature attack only one of these effects.
In previous work, we have proposed Speculative Instruction Window Weighting (SIWW) [21], a fetch gating technique that allows to address both fetch gating and instruction issue queue dynamic sizing. SIWW computes a global weight on the set of inflight instructions. This weight depends on the number and types of inflight instructions (non-branches, high confidence or low confidence branches, ...). The front-end instruction rate can be continuously adapted based on this weight. This paper extends the analysis of SIWW performed in previous work. It shows that SIWW performs better than previously proposed fetch gating techniques and that SIWW allows to dynamically adapt the size of the active instruction queue.
Resumo:
Increasing energy consumption has exerted great pressure on natural resources; this has led to a move towards sustainable energy resources to improve security of supply and to reduce greenhouse gas emissions. However, the rush to the cure may have been made in haste. Biofuels in particular, have a bad press both in terms of competition with good agricultural land for food, and also in terms of the associated energy balance with the whole life cycle analysis of the biofuel system. The emphasis is now very much on sustainable biofuel production; biofuels from wastes and lignocellulosic material are now seen as good sustainable biofuels that affect significantly better greenhouse gas balances as compared with first generation biofuels. Ireland has a significant resource of organic waste that could be a potential source of energy through anaerobic digestion. Ireland has 8% of the cattle population of the EU with less than 1% of the human population; as a result 91% of agricultural land in Ireland is under grass. Residues such as slurries and slaughter waste together with energy crops such as grass have an excellent potential to produce biogas that may be upgraded to biomethane. This biomethane may be used as a natural gas substitute; bio-compressed natural gas may then be an avenue for a biofuel strategy. It is estimated that a maximum potential of 33% of natural gas may be substituted by 2020 with a practical obtainable level of 7.5% estimated. Together with biodiesel from residues the practical obtainable level of this strategy may effect greater than a 5% substitution by energy of transport. The residues considered in this strategy to produce biofuel (excluding grass) have the potential to save 93,000 ha of agricultural land (23% of Irish arable land) when compared to a rapeseed biodiesel strategy. © 2009 Elsevier Ltd. All rights reserved.
Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects
Resumo:
Ultrasonic welding process is a rapid manufacturing process used to weld thin layers of metal at low temperatures and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, a very first attempt has been made to simulate the ultrasonic welding of metals by taking into account both of these effects (surface and volume). A phenomenological material model has been proposed which incorporates these two effects (i.e. surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects a friction law with variable coefficient of friction dependent upon contact pressure, slip, temperature and number of cycles has been derived from experimental friction tests. Thermomechanical analyses of ultrasonic welding of aluminium alloy have been performed. The effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic vibration, and velocity of welding sonotrode on the friction work at the weld interface are being analyzed. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented showing a good agreement. © 2008 Elsevier Ltd. All rights reserved.