829 resultados para Embodied embedded cognition
Resumo:
Being able to judge another person's visuo-spatial perspective is an essential social skill, hence we investigated the generalizability of the involved mechanisms across cultures and genders. Developmental, cross-species, and our own previous research suggest that two different forms of perspective taking can be distinguished, which are subserved by two distinct mechanisms. The simpler form relies on inferring another's line-of-sight, whereas the more complex form depends on embodied transformation into the other's orientation in form of a simulated body rotation. Our current results suggest that, in principle, the same basic mechanisms are employed by males and females in both, East-Asian (EA; Chinese) and Western culture. However, we also confirmed the hypothesis that Westerners show an egocentric bias, whereas EAs reveal an other-oriented bias. Furthermore, Westerners were slower overall than EAs and showed stronger gender differences in speed and depth of embodied processing. Our findings substantiate differences and communalities in social cognition mechanisms across genders and two cultures and suggest that cultural evolution or transmission should take gender as a modulating variable into account.
Resumo:
Meta-analysis was used to quantify the moderating effects of seven properties of cognitions-accessibility, temporal stability, direct experience, involvement, certainty, ambivalence and affective-cognitive consistency-on cognition-intention and cognition-behaviour relations. Literature searches revealed 44 studies that could be included in the review. Findings showed that all of the properties, except involvement, moderated attitude-behaviour consistency. Similarly, all relevant moderators improved the consistency between intentions and behaviour. Temporal stability moderated PBC-behaviour relations, certainty moderated subjective norm-intention relations, and ambivalence, certainty, and involvement all moderated attitude-intention relations. Overall, temporal stability appeared to be the strongest moderator of cognition-behaviour relations.
Resumo:
The present study investigated the extent of expectancy in the ability of glucose to affect cognitive performance. Using a within-subjects design, subjects (n 26) completed four experimental sessions (in counterbalanced order and after an initial practice session) during which they were given a 500 ml drink 30 min prior to completing a cognitive assessment battery. In addition, all subjects completed a baseline practice session during which they were given no drink. During two of the sessions, subjects were given a drink containing 50 g glucose and on the other two they were given a drink containing aspartame. A balanced placebo design was used, such that for half the sessions subjects were accurately informed as to the content of the drink (glucose or aspartame), whereas in the other two sessions they were misinformed as to the content of the drink. The task battery comprised a 6 min visual analogue of the Bakan vigilance task, an immediate verbal free-recall task, an immediate verbal recognition memory task and a measure of motor speed (two-finger tapping). Blood glucose and self-reported mood were also recorded at several time points during each session. Glucose administration was found to improve recognition memory times, in direct contrast to previous findings in the literature. Glucose administration also improved performance on the Bakan task (relative to the control drink), but only in sessions where subjects were informed that they would receive glucose and not when they were told that they would receive aspartame. There were no effects either of the nature of the drink or expectancy on the other measures. These results are interpreted in terms of there being some contribution of expectancy concerning the positive effects of glucose on cognition in studies which have not used an equi-sweet dose of aspartame as a control drink.
Resumo:
We report an extension of the procedure devised by Weinstein and Shanks (Memory & Cognition 36:1415-1428, 2008) to study false recognition and priming of pictures. Participants viewed scenes with multiple embedded objects (seen items), then studied the names of these objects and the names of other objects (read items). Finally, participants completed a combined direct (recognition) and indirect (identification) memory test that included seen items, read items, and new items. In the direct test, participants recognized pictures of seen and read items more often than new pictures. In the indirect test, participants' speed at identifying those same pictures was improved for pictures that they had actually studied, and also for falsely recognized pictures whose names they had read. These data provide new evidence that a false-memory induction procedure can elicit memory-like representations that are difficult to distinguish from "true" memories of studied pictures. © 2012 Psychonomic Society, Inc.
Resumo:
An automated cognitive approach for the design of Information Systems is presented. It is supposed to be used at the very beginning of the design process, between the stages of requirements determination and analysis, including the stage of analysis. In the context of the approach used either UML or ERD notations may be used for model representation. The approach provides the opportunity of using natural language text documents as a source of knowledge for automated problem domain model generation. It also simplifies the process of modelling by assisting the human user during the whole period of working upon the model (using UML or ERD notations).
Resumo:
This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.
Resumo:
We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 µm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.
Resumo:
Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using multiple sensors is inherently more accurate than using a single pressure reading to estimate depth. Second, common mode temperature induced wavelength shifts in the individual sensors are automatically compensated. Thirdly, temperature induced changes in the sensor pressure sensitivity are also compensated. Fourthly, the approach provides the possibility to detect and compensate for malfunctioning sensors. Finally, the system is immune to changes in the density of the monitored fluid and even to changes in the effective force of gravity, as might be obtained in an aerospace application. The performance of an individual sensor was characterized and displays a sensitivity (54 pm/cm), enhanced by more than a factor of 2 when compared to a sensor head configuration based on a silica FBG published in the literature, resulting from the much lower elastic modulus of POF. Furthermore, the temperature/humidity behavior and measurement resolution were also studied in detail. The proposed configuration also displays a highly linear response, high resolution and good repeatability. The results suggest the new configuration can be a useful tool in many different applications, such as aircraft fuel monitoring, and biochemical and environmental sensing, where accuracy and stability are fundamental. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
2000 Mathematics Subject Classification: 14B05, 32S25.
Resumo:
We describe an approach for recovering the plaintext in block ciphers having a design structure similar to the Data Encryption Standard but with improperly constructed S-boxes. The experiments with a backtracking search algorithm performing this kind of attack against modified DES/Triple-DES in ECB mode show that the unknown plaintext can be recovered with a small amount of uncertainty and this algorithm is highly efficient both in time and memory costs for plaintext sources with relatively low entropy. Our investigations demonstrate once again that modifications resulting to S-boxes which still satisfy some design criteria may lead to very weak ciphers. ACM Computing Classification System (1998): E.3, I.2.7, I.2.8.
Resumo:
The spectroscopic pump-probe reflectance method was used to investigate recombination dynamics in samples of nanocrystalline silicon embedded in a matrix of hydrogenated amorphous silicon. We found that the dynamics can be described by a rate equation including linear and quadratic terms corresponding to recombination processes associated with impurities and impurity-assisted Auger ionization, respectively. We determined the values of the recombination coefficients using the initial concentrations method. We report the coefficients of 1.5 × 1011 s-1 and 1.1 × 10-10 cm3 s-1 for the impurity-assisted recombination and Auger ionization, respectively.
Resumo:
Energy drinks have become very popular over the past few years with over half the student population in colleges and universities consuming them at least once a month (Malinauskas et al., 2007). It has been reported that the most common reasons why students consume energy drinks are to maintain alertness, reduce symptoms of hangover, increase energy, to help with driving and to prevent sleepiness (Attila and Cakir, 2011; Malinauskas et al., 2007). Previous research has suggested that energy drinks enhance sensorimotor speed, behaviour, and reduce levels of fatigue (Alford et al., 2001; Horne and Reyner, 2001; Howard and Marczinski, 2010; Kennedy and Scholey, 2004; Smit et al., 2004). The two key ingredients found in energy drinks are caffeine and glucose which have been examined together and alone, which have indicated enhanced reaction times, improvement in both verbal memory and sustained attention and more recently there is evidence to show that expectancy may play a key role in predicting intentions of future consumption (Adan and serra-Grabulosa, 2010). According to Kirsch (1997) people have specific expectations when they consume psychoactive substances that trigger physiological and psychological reactions, which tend to be independent of the psychoactive substance ingested. The concept of expectancy effects can be unambiguous especially when the information provided to the participants prior to the experimental study is specific to a possible outcome response. This thesis investigated the extent of expectancy effect on cognition and mood when psychoactive drinks containing caffeine and glucose were consumed in comparison to non-psychoactive drinks. The investigation commenced with examining the independent effects of caffeine and glucose, followed by the combination of caffeine and glucose as an energy drink on mood and cognition. The investigation advanced by comparing drink presentation effects (i.e., consuming the experimental drink from a branded bottle versus from a glass) irrespective of drink content on mood and cognition. Finally, the investigation lead to exploring what factors may predict expectancy effects when participants’ consumed psychoactive drinks among healthy adults. This was done by applying the Theory of Planned Behaviour model (TPB) (Azjen, 1991) to explore the contribution of specific attitudes, subjective norms and perceived behavioural control to the extent of expectancy effects as well as to behavioural intention, with additional variables including; beliefs, habits, past-behaviour, selfidentity. Self-identity representing someone who drinks energy drinks regularly. The level of internal consistency for Cronbach’s alpha was conducted for each variable within the TPB model and for the additional variables included for test reliability. This thesis consisted of four studies, which found that consumption of caffeine and glucose independently and also in combination resulted in psychoactive effects on mood and cognition. Experiment 2 was the only study, which indicated an expectancy effect for immediate verbal recall task and the mood subscale tension. Conversely, for experiment 4 there was a reverse effect found for the immediate verbal recall task. However, there were significant expectancy and psychoactive effects found for mood subscales throughout the four studies. It was also found that the TPB model had two significant variables past-behaviour and self-identity predicted intentions suggesting that participants who regularly consume psychoactive beverages have salient beliefs about consuming psychoactive drinks and the TPB model can be utilised to predict their intentions. Furthermore, the Theory of planned behaviour model found that habit and self-identity significantly predicted participants’ expectancy effects on the vigour. Indicating consumers of energy drinks are familiar with expected outcome response. This model was unsuccessful in predicting expectancy response for cognitive performance. Thus, overall the findings from the four studies indicated that caffeine and glucose have cognitive enhancing properties, which also positively improve mood. However, expectancy effects have been identified for mood only, whereas the overall findings within this thesis were unable to identify significant predictors of expectancy effect and response.
Resumo:
We report a linear response optical refractive index (RI) sensor, which is fabricated based on a micro-channel created within a Fabry Perot (F-P) cavity by chemical etching assisted by femtosecond laser inscription. The experimental results show the F-P resonance peak has a linear response with the RI of medium and the measuring sensitivity is proportion to the length of micro-channel. The sensor with 5 μm -long micro-channel exhibited an RI sensitivity of 1.15nm/RIU and this sensitivity increased to 9.08nm/RIU when widening the micro-channel to 35μm. Furthermore, such micro-channel FP sensors show a much broader RI sensing dynamic range (from 1.3 to 1.7) than other reported optical fiber sensors. © 2012 SPIE.