816 resultados para Electrophoretic depositions
Resumo:
Various assays have been used as an aid to diagnose failure of passive transfer (FPT) of immunoglobulins in neonatal foals, but often lack sensitivity as screening tests, or are time consuming to perform and impractical as confirmatory tests. The aim of the present study was to evaluate whether measurement of serum total globulins (TG; i.e. total protein minus albumin) can be used to estimate the electrophoretic gamma globulin (EGG) fraction in hospitalised neonatal foals with suspected FPT. Sample data from 56 foals were evaluated retrospectively. The coefficient of rank correlation was 0.84. The area under the curve of ROC analysis was 0.887, 0.922 and 0.930 for EGG concentrations <2 g/L, < 4 g/L and <8 g/L, respectively. Cut-offs for TG achieved ≥90% sensitivity for detecting EGG <2 g/L, < 4 g/L and <8 g/L, with negative predictive values of >97% and >94%, using prevalence of 15% and 30%, respectively. These results suggest that measurement of TG can be used as a guide to predicting EGG, provided that appropriate cut-off values are selected, and this technique could be a useful initial screening test for FPT in foals.
Resumo:
Prolonged ischemia of skeletal muscle tissue, followed by reperfusion, leads to ischemia/reperfusion injury (IRI), which is a feared local and systemic inflammatory reaction. With respect to the 3Rs, we wanted to determine which parameters for assessment of IRI require a reperfusion time of 24 h and for which 2 h of reperfusion are sufficient. Rats were subjected to 3 h of hind limb ischemia and 2 h or 24 h of reperfusion. Human plasma derived C1 inhibitor was used as a drug to prevent reperfusion injury. For 2 h of reperfusion the rats stayed under anesthesia throughout (severity grade 1), whereas for 24 h they were awake under analgesia during reperfusion (grade 2). The femoral artery was clamped and a tourniquet was placed, under maintenance of venous return. C1 esterase inhibitor was systemically administered 5 min before the induction of ischemia. No differences in local muscle edema formation and depositions of immunoglobulin G and immunoglobulin M were observed between 2 h and 24 h (P > 0.05), whereas lung edema was only observed after 24 h. Muscle viability was significantly lower after 24 h vs 2 h reperfusion (P < 0.05). Increased plasma creatine kinase (CK)-MM and platelet-derived growth factor (PDGF)-bb could be detected after 2 h, but not after 24 h of reperfusion. By contrast, depositions of C3b/c and fibrin in muscle were only detected after 24 h (P < 0.001). In conclusion, for a first screening of drug candidates to reduce IRI, 2 h reperfusions are sufficient, and these reduce the severity of the animal experiment. Twenty-four-hour reperfusions are only needed for in-depth analysis of the mechanisms of IRI, including lung damage.
Resumo:
A series of chimaeric DNA/RNA triplex-forming oligonucleotides (TFOs) with identical base-sequence but varying sequential composition of the sugar residues were prepared. The structural, kinetic and thermodynamic properties of triplex formation with their corresponding double-helical DNA target were investigated by spectroscopic methods. Kinetic and thermodynamic data were obtained from analysis of non-equilibrium UV-melting- and annealing curves in the range of pH 5.1 to 6.7 in a 10 mM citrate/phosphate buffer containing 0.1M NaCl and 1 mM EDTA. It was found that already single substitutions of ribo- for deoxyribonucleotides in the TFOs greatly affect stability and kinetics of triplex formation in a strongly sequence dependent manner. Within the sequence context investigated, triplex stability was found to increase when deoxyribonucleotides were present at the 5'-side and ribonucleotides in the center of the TFO. Especially the substitution of thymidines for uridines in the TFO was found to accelerate both, the association and dissociation process, in a strongly position-dependent way. Differential structural information on triplexes and TFO single-strands was obtained from CD-spectroscopy and gel mobility experiments. Only minor changes were observed in the CD spectra of the triplexes at all pH values investigated, and the electrophoretic mobility was nearly identical in all cases, indicating a high degree of structural similarity. In contrast, the single-stranded TFOs showed high structural variability as determined in the same way. The results are discussed in the context of the design of TFOs for therapeutic or biochemical applications.
Resumo:
Osteogenesis imperfecta (OI) is a heritable connective tissue disease characterized by bone fragility and increased risk of fractures. Up to now, mutations in at least 18 genes have been associated with dominant and recessive forms of OI that affect the production or post-translational processing of procollagen or alter bone homeostasis. Among those, SERPINH1 encoding heat shock protein 47 (HSP47), a chaperone exclusive for collagen folding in the ER, was identified to cause a severe form of OI in dachshunds (L326P) as well as in humans (one single case with a L78P mutation). To elucidate the disease mechanism underlying OI in the dog model, we applied a range of biochemical assays to mutant and control skin fibroblasts as well as on bone samples. These experiments revealed that type I collagen synthesized by mutant cells had decreased electrophoretic mobility. Procollagen was retained intracellularly with concomitant dilation of ER cisternae and activation of the ER stress response markers GRP78 and phospho-eIF2α, thus suggesting a defect in procollagen processing. In line with the migration shift detected on SDS-PAGE of cell culture collagen, extracts of bone collagen from the OI dog showed a similar mobility shift, and on tandem mass spectrometry, the chains were post-translationally overmodified. The bone collagen had a higher content of pyridinoline than control dog bone. We conclude that the SERPINH1 mutation in this naturally occurring model of OI impairs how HSP47 acts as a chaperone in the ER. This results in abnormal post-translational modification and cross-linking of the bone collagen.
Resumo:
The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.
Resumo:
Iodine-129 (Full-size image (<1 K)) concentrations have been determined by accelerator mass spectrometry in rainwater samples taken at Seville (southwestern Spain) in 1996 and 1997. This technique allows a reduction in the detection limits for this radionuclide in comparison to radiometric counting and other mass spectrometric methods such as ICP-MS. Typical 129I concentrations range from 4.7×107129I atoms/l (19.2%) to 4.97×109129I atoms/l (5.9%), while 129I depositions are normally in the order of 108–1010 atoms/m2 d. These values agree well with other results obtained for recent rainwater samples collected in Europe. Apart from these, the relationship between 129I deposition and some atmospheric factors has been analyzed, showing the importance of the precipitation rate and the concentration of suspended matter in it.
Resumo:
Familial acute myeloid leukemia is rare and linked to germline mutations in RUNX1, GATA2 or CCAAT/enhancer binding protein-α (CEBPA). We re-evaluated a large family with acute myeloid leukemia originally seen at NIH in 1969. We utilized whole-exome sequencing to study this family, and conducted in silico bioinformatics analysis, protein structural modeling and laboratory experiments to assess the impact of the identified CEBPA Q311P mutation. Unlike most previously identified germline mutations in CEBPA, which were N-terminal frameshift mutations, we identified a novel Q311P variant that was located in the C-terminal bZip domain of C/EBPα. Protein structural modeling suggested that the Q311P mutation alters the ability of the CEBPA dimer to bind DNA. Electrophoretic mobility shift assays showed that the Q311P mutant had attenuated binding to DNA, as predicted by the protein modeling. Consistent with these findings, we found that the Q311P mutation has reduced transactivation, consistent with a loss-of-function mutation. From 45 years of follow-up, we observed incomplete penetrance (46%) of CEBPA Q311P. This study of a large multi-generational pedigree reveals that a germline mutation in the C-terminal bZip domain can alter the ability of C/EBP-α to bind DNA and reduces transactivation, leading to acute myeloid leukemia.
Resumo:
In this work, electrophoretic preconcentration of protein and peptide samples in microchannels was studied theoretically using the 1D dynamic simulator GENTRANS, and experimentally combined with MS. In all configurations studied, the sample was uniformly distributed throughout the channel before power application, and driving electrodes were used as microchannel ends. In the first part, previously obtained experimental results from carrier-free systems are compared to simulation results, and the effects of atmospheric carbon dioxide and impurities in the sample solution are examined. Simulation provided insight into the dynamics of the transport of all components under the applied electric field and revealed the formation of a pure water zone in the channel center. In the second part, the use of an IEF procedure with simple well defined amphoteric carrier components, i.e. amino acids, for concentration and fractionation of peptides was investigated. By performing simulations a qualitative description of the analyte behavior in this system was obtained. Neurotensin and [Glu1]-Fibrinopeptide B were separated by IEF in microchannels featuring a liquid lid for simple sample handling and placement of the driving electrodes. Component distributions in the channel were detected using MALDI- and nano-ESI-MS and data were in agreement with those obtained by simulation. Dynamic simulations are demonstrated to represent an effective tool to investigate the electrophoretic behavior of all components in the microchannel.
Resumo:
Homogenous detergent-solubilized NADPH-Cytochrome P-450 reductase was incorporated into microsomes and liposomes. This binding occurred spontaneously at temperatures between 4(DEGREES) and 37(DEGREES) and appeared to involve hydrophobic forces as the binding was not disrupted by 0.5 M sodium chloride. This exogenously-added reductase was active catalytically towards native cytochrome P-450, suggesting an association with the microsomal membrane similar to endogenous reductase. Homogeneous detergent-solubilized reductase was disaggregated by Renex-690 micelles, confirming the presence of a hydrophobic combining region on the enzyme. In contrast to these results, steapsin protease-solubilized reductase was incapable of microsomal attachment and did not interact with Renex-690 micelles. Detergent-solubilized reductase (76,500 daltons) was converted into a form with the electrophoretic mobility of steapsin protease-solubilized reductase (68,000 daltons) and a 12,500 dalton peptide (as determined by polyacrylamide-SDS gel electrophoresis) when the liposomal-incorporated enzyme was incubated with steapsin protease. The 68,000 dalton fragment thus obtained had properties identical with steapsin protease-solubilized reductase, i.e. it was catalytically active towards cytochrome c but inactive towards cytochrome P-450 and did not bind liposomes. The 12,500 dalton fragment remained associated with the liposomes when the digest was fractionated by gel filtration, suggesting that this is the segment of the enzyme which is embedded in the phospholipid bilayer. Thus, detergent-solubilized reductase appears to contain a soluble catalytic domain and a separate and separable membrane-binding domain. This latter domain is required for attaching the enzyme to the membrane and also to facilitate the catalytic interaction between the reductase and its native electron acceptor, cytochrome P-450. The membrane-binding segment of the reductase was isolated by preparative gel electrophoresis in SDS following its generation by proteolytic treatment of liposome-incorporated reductase. The peptide has a molecular weight of 6,400 as determined by gel filtration in 8 M guanidine hydrochloride and has an amino acid composition which is not especially hydrophobic. Following removal of SDS and dialysis out of 6 M urea, the membrane-binding peptide was unable to inhibit the activity of a reconstituted system containing purified reductase and cytochrome P-450. Moreover, when reductase and cytochrome P-450 were added to liposomes which contained the membrane-binding peptide, it was determined that mixed function oxidase activity was reconstituted as effectively as when vesicles without the membrane-binding peptide were used. Thus, the membrane-binding peptide was ineffective as an inhibitor of mixed function oxidase activity, suggesting perhaps that it facilitates catalysis by anchoring the catalytic domain of the reductase proximal to cytochrome P-450 (i.e. in the same mixed micelle) rather than through a specific interaction with cytochrome P-450. ^
Resumo:
Microcell-mediated chromosome transfer is a method of gene transfer which allows for the introduction of single or small groups of intact chromosomes into recipient host cells. Microcell transfer was first performed by Fournier and Ruddle using rodent microcells and various recipient cells. Expansion of this technology to include the transfer of normal human genetic material has been hindered because large micronucleate populations from diploid human cells have been unobtainable. This dissertation research describes, however, the methods for production of micronuclei in 40-60% of normal human fibroblasts. Once micronucleate cells were obtained, they were enucleated by centrifugation in the presence of Cytochalasin B; the microcells were then purified and fused to recipient mouse (LMTK('-)) cells using a new fusion protocol employing polyethylene glycol containing phytohemagglutinin. Microcell clones were isolated from the HAT selection system. Alkaline Giemsa staining performed on these hybrids indicated the presence of a single human chromosome in each of seven microcell clones from three separate experiments. That chromosome was further identified by G banding analysis to be human chromosome #17, which codes for thymidine kinase. The time course for production of these hybrids from fusion to karyotypic analysis was 6 weeks. The viability of the transferred human genetic material was assessed by electrophoretic isozyme analysis.^ Subsequent experiments were performed in an attempt to optimize the transfer frequency for the thymidine kinase gene using this system. Results indicated that the frequency could be increased from < 1 x 10('-6) in initial experiments to 2 x 10('-5) in the latest experiment. Analyses were also conducted to determine the number of chromosomes per isolated microcell as well as to investigate the stability of the transferred human chromosome in the mouse genome. ^
Resumo:
Non-pregnant, female adult rats pretreated with either phenobarbital (PB) or (beta)-naphthoflavone ((beta)NF) through short-course intraperitoneal injections were shown by sodium dithionite-reduced carbon monoxide difference spectroscopy and NADPH-cytochrome c in vitro assay to contain cytochrome P-450 and NADPH-dependent reductase associated with the microsomal fraction of colon mucosa. These two protein components of the mixed function oxidase system were released from the microsomal membrane, resolved from each other, and partially purified by using a combination of techniques including solubilization in nonionic detergent followed by ultracentrifugation, anion exchange and adsorption column chromatographies, native gel electrophoresis, polyethylene glycol fractionation and ultrafiltration.^ In vitro reconstitution assays demonstrated the cytochrome P-450 fraction as the site of substrate and molecular oxygen binding. By the use of immunochemical techniques including radial immunodiffusion, Ouchterlony double diffusion and protein electroblotting, the cytochrome P-450 fraction was shown to contain at least 5 forms of the protein, having molecular weights as determined by SDS gel electrophoresis identical to the corresponding hepatic cytochrome P-450. Estimation of total cytochrome P-450 content confirmed the preferential induction of particular forms in response to the appropriate drug pretreatment.^ The colonic NADPH-dependent reductase was isolated from native gel electrophoresis and second dimensional SDS gel electrophoresis was performed in parallel to that for purified reductase from liver. Comparative electrophoretic mobilities together with immunochemical analysis, as with the cytochrome P-450s, reconstitution assays, and kinetic characterization using artificial electron acceptors, gave conclusive proof of the structural and functional homology between the colon and liver sources of the enzyme.^ Drug metabolism was performed in the reconstituted mixed function oxidase system containing a particular purified liver cytochrome P-450 form or partially pure colon cytochrome P-450 fraction plus colon or liver reductase and synthetic lipid vesicles. The two drugs, benzo{(alpha)}pyrene and benzphetamine, which are most representative of the action of system in liver, lung and kidney, were tested to determine the specificity of the reconstituted system. The kinetics of benzo{(alpha)}pyrene hydroxylation were followed fluorimetrically for 3-hydroxybenzo{(alpha)}pyrene production. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
A UV-induced mutation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) was characterized in the CHO clone A24. The asymmetric 4-banded zymogram and an in vitro GAPD activity equal to that of wild type cells were not consistent with models of a mutant heterozygote producing equal amounts of wild type and either catalytically active or inactive mutant subunits that interacted randomly. Cumulative evidence indicated that the site of the mutation was the GAPD structural locus expressed in CHO wild type cells, and that the mutant allele coded for a subunit that differed from the wild type subunit in stability and kinetics. The evidence included the appearance of a fifth band, the putative mutant homotetramer, after addition of the substrate glyceraldehyde-3-phosphate (GAP) to the gel matrix; dilution experiments indicating stability differences between the subunits; experiments with subsaturating levels of GAP indicating differences in affinity for the substrate; GAPD zymograms of A24 x mouse hybrids that were consistent with the presence of two distinct A24 subunits; independent segregation of A24 wild type and mutant electrophoretic bands from the hybrids, which was inconsistent with models of mutation of a locus involved in posttranslational modification; the mapping of both wild type and mutant forms of GAPD to chromosome 8; and the failure to detect any evidence of posttranslational modification (of other A24 isozymes, or through mixing of homogenates of A24 and mouse).^ The extent of skewing of the zymogram toward the wild type band, and the unreduced in vitro activity were inconsistent with models based solely on differences in activity of the two subunits. Comparison of wild type homotetramer bands in wild type cells and A24 suggested the latter had a preponderance of wild type subunits over mutant subunits, and had more GAPD tetramers than did CHO controls.^ Two CHO linkages, GAPD-triose phosphate isomerase, and acid phosphatase 2-adenosine deaminase were reported provisionally, and several others were confirmed. ^
Resumo:
Theoretical and empirical studies were conducted on the pattern of nucleotide and amino acid substitution in evolution, taking into account the effects of mutation at the nucleotide level and purifying selection at the amino acid level. A theoretical model for predicting the evolutionary change in electrophoretic mobility of a protein was also developed by using information on the pattern of amino acid substitution. The specific problems studied and the main results obtained are as follows: (1) Estimation of the pattern of nucleotide substitution in DNA nuclear genomes. The pattern of point mutations and nucleotide substitutions among the four different nucleotides are inferred from the evolutionary changes of pseudogenes and functional genes, respectively. Both patterns are non-random, the rate of change varying considerably with nucleotide pair, and that in both cases transitions occur somewhat more frequently than transversions. In protein evolution, substitution occurs more often between amino acids with similar physico-chemical properties than between dissimilar amino acids. (2) Estimation of the pattern of nucleotide substitution in RNA genomes. The majority of mutations in retroviruses accumulate at the reverse transcription stage. Selection at the amino acid level is very weak, and almost non-existent between synonymous codons. The pattern of mutation is very different from that in DNA genomes. Nevertheless, the pattern of purifying selection at the amino acid level is similar to that in DNA genomes, although selection intensity is much weaker. (3) Evaluation of the determinants of molecular evolutionary rates in protein-coding genes. Based on rates of nucleotide substitution for mammalian genes, the rate of amino acid substitution of a protein is determined by its amino acid composition. The content of glycine is shown to correlate strongly and negatively with the rate of substitution. Empirical formulae, called indices of mutability, are developed in order to predict the rate of molecular evolution of a protein from data on its amino acid sequence. (4) Studies on the evolutionary patterns of electrophoretic mobility of proteins. A theoretical model was constructed that predicts the electric charge of a protein at any given pH and its isoelectric point from data on its primary and quaternary structures. Using this model, the evolutionary change in electrophoretic mobilities of different proteins and the expected amount of electrophoretically hidden genetic variation were studied. In the absence of selection for the pI value, proteins will on the average evolve toward a mildly basic pI. (Abstract shortened with permission of author.) ^
Resumo:
The MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in several cancers of epithelial origin, including those of breast, pancreas, lung, ovary, and colon. Functions of MUC1 include protection of mucosal epithelium, modulation of cellular adhesion, and signal transduction. Aberrantly increased expression of MUC1 in cancer cells promotes tumor progression through adaptation of these functions. Some regulatory elements participating in MUC1 transcription have been described, but the mechanisms responsible for overexpression are largely unknown. A region of MUC1 5′ flanking sequence containing two conserved potential cytokine response elements, an NFκB site at −589/−580 and a STAT binding element (SBE) at −503/−495, has been implicated in high level expression in breast and pancreatic cancer cell lines. Persistent stimulation by proinflammatory cytokines may contribute to increased MUC1 transcription by tumor cells. ^ T47D breast cancer cells and normal human mammary epithelial cells (HMEC) were used to determine the roles of the κB site and SBE in basal and stimulated expression of MUC1. Treatment of T47D cells and HMEC with interferon-γ (IFNγ) alone enhanced MUC1 expression at the level of transcription, and the effect of IFNγ was further stimulated by tumor necrosis factor-α (TNFα). MUC1 responsiveness to these cytokines was modest in T47D cells but clearly evident in HMEC. Transient transfection of T47D cells with mutant MUC1 promoter constructs revealed that the κB site at −589/−580 and the SBE at −503/−495 and were required for cooperative stimulation by TNFα and IFNγ. Electrophoretic mobility shift assays (EMSA) revealed that the synergy was mediated not by cooperative binding of transcription factors but by the independent actions of STAT1α and NFκB p65 on their respective binding sites. Independent mutations in the κB site and SBE abrogated cytokine responsiveness and reduced basal MUC1 promoter activity by 45–50%. However, only the κB site appeared to be constitutively activated in T47D cells, in part by NFκB p65. These findings implicate two cytokine response elements in the 5 ′ flanking region of MUC1, specifically a κB site and a STAT binding element, in overexpression of MUC1 in breast cancer cells. ^
Resumo:
Stats (s&barbelow;ignal t&barbelow;ransducer and a&barbelow;ctivator of t&barbelow;ranscription) are latent transcription factors that translocate from the cytoplasm to nucleus. Constitutive activation of Stat3α by upstream oncoproteins and receptor tyrosine kinases has been found in many human tumors and tumor-derived cell lines and it is often correlated with the activation of ErbB-2. In order to explore the involvement of ErbB-2 in the activation of Stat3 and the mechanisms underlying this event, an erbB-2 point mutant was used as a model of a constitutively activated receptor. Phenylalanine mutations (Y-F) were made in the receptor's autophosphorylation sites and their ability to activate Stat3α was evaluated. Our results suggest that Stat3α and Janus tyrosine kinase 2 associates with ErbB-2 prior to tyrosine phosphorylation of the receptor and that full activation of Stat3α by ErbB-2 requires the participation of other non-receptor tyrosine kinases. Both Src and Jak2 kinases contribute to the activation of Stat3α while only Src binds to ErbB-2 only when the receptor is tyrosine phosphorylated. Our results also suggest that tyrosine 1139 may be important for Src SH2 domain association since a mutant lacking this tyrosine reduces the ability of the Src SH2 domain to bind to ErbB-2 and significantly decreases its ability to activate Stat3α. ^ In order to disrupt aberrant STAT3α activation which contributes to tumorigenesis, we sought small molecules which can specifically bind to the STAT3 SH2 domain, thereby abolishing its ability of being recruited into receptors, and also blocking the dimer formation required for STAT3α activation. A phosphopeptide derived from gp130 was found to have a high affinity to STAT3 SH2 domain, and we decided to use this peptide as the base for further modifications. A series of peptide based compounds were designed and tested using electrophoretic mobility shift assay and fluorescence polarization assay to evaluate their affinity to the STAT3 SH2 domain. Two promising compounds, DRIV-73C and BisPOM, were used for blocking STAT3α activity in cell culture. Either can successfully impair STAT3α activation induced by IL-6 stimulation in HepG2 cells. BisPOM proved to be the more effective in blocking STAT3α tyrosine phosphorylation in induced cells and tumor cell lines, and was the more potent in inhibiting STAT3 dependent cell growth. ^