973 resultados para Electron spin resonance (ESR)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.
Resumo:
Energy fluctuations of a solute molecule embedded in a polar solvent are investigated to depict the energy landscape for solvation dynamics. The system is modeled by a charged molecule surrounded by two layers of solvent dipolar molecules with simple rotational dynamics. Individual solvent molecules are treated as simple dipoles that can point toward or away from the central charge (Ising spins). Single-spin-flip Monte Carlo kinetics simulations are carried out in a two-dimensional lattice for different central charges, radii of outer shell, and temperatures. By analyzing the density of states as a function of energy and temperatures, we have determined the existence of multiple freezing transitions. Each of them can be associated with the freezing of a different layer of the solvent. (C) 2002 American Institute of Physics.
Resumo:
ESR spectra of spin probes were used to monitor lipid-protein interactions in native and cholesterol-enriched microsomal membranes. In both systems composite spectra were obtained, one characteristic of bulk bilayer organization and another due to a motionally restricted population, which was ascribed to lipids in a protein microenvironment. Computer spectral subtractions revealed that cholesterol modulates the order/mobility of both populations in opposite ways, i.e., while the lipid bilayer region gives rise to more anisotropic spectra upon cholesterol enrichment, the spectra of the motionally restricted population become indicative of increased mobility and/or decreased order. These events were evidenced by measurement of both effective order parameters and correlation times. The percentages of the motionally restricted component were invariant in native and cholesterol-enriched microsomes. Variable temperature studies also indicated a lack of variation of the percentages of both spectral components, suggesting that the motionally restricted one was not due to protein aggregation. The results correlate well with the effect of cholesterol enrichment on membrane-bound enzyme kinetics and on the behavior of fluorescent probes [Castuma & Brenner (1986) Biochemistry 25, 4733-4738]. Several hypothesis are put forward to explain the molecular mechanism of the cholesterol-induced spectral changes.
Resumo:
We present the zero-temperature phase diagram of the one-dimensional t(2g)-orbital Hubbard model, obtained using the density-matrix renormalization group and Lanczos techniques. Emphasis is given to the case of the electron density n=5 corresponding to five electrons per site, while several other cases for electron densities between n=3 and 6 are also studied. At n=5, our results indicate a first-order transition between a paramagnetic (PM) insulator phase, with power-law slowly decaying correlations, and a fully polarized ferromagnetic (FM) state by tuning the Hund's coupling. The results also suggest a transition from the n=5 PM insulator phase to a metallic regime by changing the electron density, either via hole or electron doping. The behavior of the spin, charge, and orbital correlation functions in the FM and PM states are also described in the text and discussed. The robustness of these two states against varying parameters suggests that they may be of relevance in quasi-one-dimensional Co-oxide materials, or even in higher dimensional cobaltite systems as well.
Resumo:
The ESR spectrum of CuCl2 adsorbed onto a silica gel surface chemically modified with the benzimidazole molecule showed that the surface complex has an octahedral symmetry with tetragonal distortion. The measured ESR parameters were g(parallel to) = 2.287, g(perpendicular to) = 2.062, A(parallel to) = 153 G and superhyperfine splitting A(N) = 15 G. The fit of the theoretical expressions to the experimental data was very reasonable. The effective spin orbit coupling constant for Cu2+ was reduced from its normal free ion value of lambda = -828 cm(-1) by as much as 30%. This reduction of lambda is normal in the solid state and in frozen solution complexes.
Resumo:
Results of differential scanning calometry (DSC), x-ray diffraction (XRD), and F-19 nuclear magnetic resonance (NMR) of InF3-based glasses, treated at different temperatures, ranging from glass transition temperature (T-g) to crystallization temperature (T-c), are reported. The main features of the experimental results are as follows. DSC analysis emphasizes several steps in the crystallization process. Heat treatment at temperatures above T-g enhances the nucleation of the first growing phases but has little influence on the following ones. XRD results show that several crystalline phases are formed, with solid state transitions when heated above 680 K, the F-19 NMR results show that the spin-lattice relaxation, for the glass samples heat treated above 638 K, is described by two time constants. For samples treated below this temperature a single time constant T-1 was observed. Measurements of the F-19 spin-lattice relaxation time (T-1), as a function of temperature,made possible the identification of the mobile fluoride ions. The activation energy, for the ionic motion, in samples treated at crystallization temperature was found to be 0.18 +/- 0.01 eV. (C) 1998 American Institute of Physics.
Resumo:
Electrically Detected Magnetic Resonance (EDMR) was used to investigate the influence of dye doping molecules on spin-dependent exciton formation in Aluminum (III) 8-hydroxyquinoline (Alq(3)) based OLEDs with different device structures and temperature ranges. 4-(dicyanomethylene)-2-methyl-6-{2-[(4-diphenylamino-phenyl]ethyl}-4H-pyran (DCM-TPA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene) were used as dopants. A strong temperature dependence have been observed for doped OLEDs, with a decrease of two orders of magnitude in EDMR signal for temperatures above similar to 200 K. The signal temperature dependence were fitted supposing different spin-lattice relaxation processes. The results suggest that thermally activated vibrations of dopants molecules induce spin pair dissociation, reducing the signal.
Resumo:
We present predictions for the spin structure functions of the proton in the framework of a unitary isobar model for one-pion photo- and electroproduction. Our results are compared with recent experimental data from SLAC. The first moments of the calculated structure functions fullfil the Gerasimov-Drell-Hearn and Burkhardt-Cottingham sum rules within an error of typically 5-10%.
Resumo:
Lithium niobate (LiNbO3) thin films with 1/1 stoichiometry were prepared by a spin-coating from polymeric precursor method. The films deposited on silicon (100) substrates, were thermally treated from 400° to 600°C for 3 hours in order to study the influence of thermal treatment on the crystallinity, microstructure, grain size and roughness. X-ray diffraction (XRD) results showed that LiNbO3 phase crystallizes at low temperature (400°C). It was observed by scanning electron microscopy (SEM) that it is possible to obtain dense thin films at temperatures around 500°C. The atomic force microscopy (AFM) results showed that the grain size and roughness are strongly influenced by the annealing temperature.
Resumo:
In this work, we investigate theoretically the spin-resolved local density of states (SR-LDOS) of a ferromagnetic (FM) island hybridized with an adatom, which is described by the Single Impurity Anderson Model (SIAM). Our results are comparable with Scanning Tunneling Microscope (STM) experimental data. © 2012 Springer Science+Business Media, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)