956 resultados para Elbow Flexor Muscles
Resumo:
Evaluation of trunk movements, trunk muscle activation, intra-abdominal pressure and displacement of centres of pressure and mass was undertaken to determine whether trunk orientation is a controlled variable prior to and during rapid bilateral movement of the upper limbs. Standing subjects performed rapid bilateral symmetrical upper limb movements in three directions (flexion, abduction and extension). The results indicated a small (0.4-3.3 degrees) but consistent initial angular displacement between the segments of the trunk in a direction opposite to that produced by the reactive moments resulting from limb movement. Phasic activation of superficial trunk muscles was consistent with this pattern of preparatory motion and with the direction of motion of the centre of mass. In contrast, activation of the deep abdominal muscles was independent of the direction of limb motion, suggesting a non-direction specific contribution to spinal stability. The results support the opinion that feedforward postural responses result in trunk movements, and that orientation of the trunk and centre of mass are both controlled variables in relation to rapid limb movements.
Resumo:
The Apocreadiidae is reviewed and is considered to include genera recognised previously within the families Apocreadiidae, Homalometridae, Schistorchiidae, Sphincterostomatidae and Trematobrienidae. Key features of the family are extensive vitelline follicles, eye-spot pigment dispersed in forebody, I-shaped excretory vesicle, no cirrus-sac and genital pore opening immediately anterior to the ventral sucker (usually) or immediately posterior to it (Postporus Manter, 1949). Three subfamilies and 18 genera are recognised within the Apocreadiidae. The Apocreadiinae comprises Homalometron Stafford, 1904 (new syn. Barbulostomum Ramsey, 1965), Callohelmis n. g., Choanodera Manter, 1940, Crassicutis Manter, 1936, Dactylotrema Bravo-Hollis & Manter, 1957, Marsupioacetabulum Yamaguti, 1952, Microcreadium Simer, 1929, Myzotus Manter, 1940, Neoapocreadium Siddiqi & Cable, 1960, Neomegasolena Siddiqi & Cable, 1960, Pancreadium Manter, 1954, Procaudotestis Szidat, 1954 and Trematobrien Dollfus, 1950. The Schistorchiinae comprises Schistorchis Luhe, 1906, Sphincterostoma Yamaguti, 1937, Sphincteristomum Oshmarin, Mamaev & Parukhin, 1961 and Megacreadium Nagaty, 1956. The Postporinae comprises only Postporus. A key to subfamilies and genera of the Apocreadiidae is provided. It is argued that there is no convincing basis for the recognition of the genus Apocreadium Manter, 1937 and all its constituent species are combined with Homalometron. The following new combinations are proposed for species previously recognised within Apocreadium: Homalometron balistis (Manter, 1947), H. caballeroi (Bravo-Hollis, 1953), H. cryptum (Overstreet, 1969), H. longisinosum (Manter, 1937), H. manteri (Overstreet, 1970), H. mexicanum (Manter, 1937) and H. vinodae (Ahmad, 1985). Apocreadium uroproctoferum Sogandares-Bernal, 1959 is found to lack a uroproct and is made a synonym of H. mexicanum. Homalometron verrunculi nom. nov. is proposed to replace the secondarily pre-occupied H. caballeroi Lamothe-Argumedo, 1965. Barbulostomum is made a synonym of Homalometron and H. cupuloris (Ramsey, 1965) n. comb. is proposed. Neochoanodera is made a synonym of Choanodera and Choanodera ghanensis (Fischthal & Thomas, 1970) n. comb. is proposed. Species within the Apocreadiinae and Postporinae are reviewed and the following are recorded or described from Australian fishes: Homalometron wrightae n. sp. from Achlyopa nigra (Macleay), H. synagris (Yamaguti, 1953) n. comb. from Scolopsis monogramma (Cuvier), H. stradbrokensis n. sp. from Gerres subfasciatus Cuvier, Marsupioacetabulum opallioderma n. sp. from G. subfasciatus, Neoapocreadium karwarensis (Hafeezullah, 1970) n. comb. from G. subfasciatus, N. splendens n. sp. from S. monogramma and Callohelmis pichelinae n. g., n. sp. from Hemigymnus melapterus (Bloch), H. fasciatus (Bloch), Stethojulis bandanensis (Bleeker) andChoerodon venustus (De Vis). Callohelmis is recognised by the combination of absence of tegumental spines, caeca terminating midway between the testes and posterior end of body, ventral sucker enclosed in a tegumental pouch, prominent muscles radiating through the body from the ventral sucker, vitelline follicles not extending into the forebody, and a very short excretory vesicle that opens ventrally. New combinations for species previously recognised within Crassicutis are proposed as follows: Neoapocreadium caranxi (Bilqees, 1976) n. comb., N. gerridis (Nahhas & Cable, 1964) n. comb., N. imtiazi (Ahmad, 1984) n. comb. and N. marina (Manter, 1947) n. comb. The host-specificity and zoogeography of the Apocreadiinae are considered.
Resumo:
There has been considerable interest in the literature regarding the function of transversus abdominis, the deepest of the abdominal muscles, and the clinical approach to training this muscle. With the development of techniques for the investigation of this muscle involving the insertion of fine-wire electromyographic electrodes under the guidance of ultrasound imaging it has been possible to test the hypotheses related to its normal function and function in people with low back pain. The purpose of this review is to provide an appraisal of the current evidence for the role of transversus abdominis in spinal stability, to develop a model of how the contribution of this muscle differs from the other abdominal muscles and to interpret these findings in terms of the consequences of changes in this function.
Resumo:
1. The co-ordination between respiratory and postural functions of the diaphragm was investigated during repetitive upper Limb movement. It was hypothesised that diaphragm activity would occur either tonically or phasically in association with the forces from each movement and that this activity would combine with phasic respiratory activity. 2. Movements of the upper limb and ribcage were measured while standing subjects performed repetitive upper limb movements 'as fast as possible'. Electromyographic (EMG) recordings of the costal diaphragm were made using intramuscular electrodes in four subjects. Surface electrodes were placed over the deltoid and erector spinae muscles. 3. In contrast to standing at rest, diaphragm activity was present throughout expiration at 78 +/- 17% (mean +/- S.D.) of its peak inspiratory magnitude during repeated upper limb movement. 4. Bursts of deltoid and erector spinae EMG activity occurred at the Limb movement frequency (similar to 2.9 Hz). Although the majority of diaphragm EMG power was at the respiratory frequency (similar to 0.4 Hz), a peak was also present at the movement frequency. This finding was corroborated by averaged EMG activity triggered from upper limb movement. In addition, diaphragm EMG activity was coherent with ribcage motion at the respiratory frequency and with upper limb movement at the movement frequency. 5. The diaphragm response was similar when movement was performed while sitting. In addition, when subjects moved with increasing frequency the peak upper limb acceleration correlated with diaphragm EMG amplitude. These findings support the argument that diaphragm contraction is related to trunk control. 6. The results indicate that activity of human phrenic motoneurones is organised such that it contributes to both posture and respiration during a task which repetitively challenges trunk posture.
Resumo:
Three-dimensional trunk motion. trunk muscle electromyography and intra-abdominal pressure were evaluated to investigate the preparatory control of the trunk associated with voluntary unilateral upper limb movement. The directions of angular motion produced by moments reactive to limb movement in each direction were predicted using a three-dimensional model of the body. Preparatory motion of the trunk occurred in three dimensions in the directions opposite to the reactive moments. Electromyographic recordings from the superficial trunk muscles were consistent with preparatory trunk motion. However, activation of transversus abdominis was inconsistent with control of direction-specific moments acting on the trunk. The results provide evidence that anticipatory postural adjustments result in movements and not simple rigidification of the trunk. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The presumptive tonic muscles fibres of Cottoperca gobio, Champsocephalus esox, Harpagifer bispinis, Eleginops maclovinus, Patagonothen tessellata, P. cornucola and Paranotothenia magellanica stained weakly or were unstained for glycogen, lipid, succinic dehydrogenase (SDHase) and myosin ATPase (mATPase) activity. Slow, intermediate and fast twitch muscle fibres, distinguished on the basis of the pH stability of their mATPases, showed intense, moderate and low staining activity for SDHase, respectively. Slow fibres were the major component of the pectoral fin adductor profundis muscle. The proportion of different muscle fibre types varied from the proximal to distal end of the muscle, but showed relatively little variation between species. The myotomes contained a lateral superficial strip of red muscle composed of presumptive tonic, slow twitch and intermediate fibres, thickening to a major wedge at the horizontal septum. All species also had characteristic secondary dorsal and ventral wedges of red muscle. The relative abundance and localization of muscle fibre types in the red muscle varied between species and with body size in the protandric hermaphrodite E. maclovinus. The frequency distribution of diameters for fast twitch muscle fibres, the major component of deep white muscle, was determined in fish of a range of body sizes. The absence of fibres <20 mu m diameter was used as a criterion for the cessation of muscle fibre recruitment. Fibre recruitment had stopped in P, tessellata of 13.8 cm L-T and E, maclovinus of 32.8 cm L-T, equivalent to 49 and 36.5% of their recorded maximum sizes respectively. As a result in 20-cm P. tessellata, the maximum fibre diameter was 300 mu m and 36% of fibres were in excess of 200 mu m The unusually large maximum fibre diameter, the general arrangement of the red muscle layer and the extreme pH lability of the mATPase of fast twitch fibres are all common characters of the sub-Antarctic and Antarctic Notothenioids, including Cottoperca gobio, the suggested sister group to the Notothenidae. (C) 2000 The Fisheries Society of the British Isles.
Resumo:
1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh mater decapod crustacean Cherax: destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the XR Ca2+ release in both fibre types. 3. The XR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded XR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mw in the presence of 8 mM ATP(total) and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1. to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of XR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and cardiac isoforms, that the inhibition exerted by Mg2+ at rest on the crustacean SR Ca2+-release channels must be removed during excitation-contraction coupling and that, unlike in crustacean fibres, CICR cannot play the major role in the activation of XR Ca2+-release channels in the rat skeletal muscle.
Resumo:
In humans, when the stability of the trunk is challenged in a controlled manner by repetitive movement of a limb, activity of the diaphragm becomes tonic but is also modulated at the frequency of limb movement. In addition, the tonic activity is modulated by respiration. This study investigated the mechanical output of these components of diaphragm activity. Recordings were made of costal diaphragm, abdominal, and erector spinae muscle electromyographic activity; intra-abdominal, intrathoracic, and transdiaphragmatic pressures; and motion of the rib cage, abdomen, and arm. During limb movement the diaphragm and transversus abdominis were tonically active with added phasic modulation at the frequencies of both respiration and limb movement. Activity of the other trunk muscles was not modulated by respiration. Intra-abdominal pressure was increased during the period of limb movement in proportion to the reactive forces from the movement. These results show that coactivation of the diaphragm and abdominal muscles causes a sustained increase in intra-abdominal pressure, whereas inspiration and expiration are controlled by opposing activity of the diaphragm and abdominal muscles to vary the shape of the pressurized abdominal cavity.
Resumo:
Objective: To determine whether electromyographic (EMG) onsets of vastus medialis obliquus (VMO) and vastus lateralis (VL) are altered in the presence of patellofemoral pain syndrome (PFPS) during the functional task of stair stepping. Design: Cross-sectional. Setting: University laboratory. Patients: Thirty-three subjects with PFPS and 33 asymptomatic controls. Interventions: Subjects ascended and descended a set of stairs-2 steps, each 20-cm high-at usual stair-stepping pace. EMG readings of VMO and VL taken on middle stair during step up (concentric contraction) and step down (eccentric contraction). Main Outcome Measures: Relative difference in onset of surface EMG activity of VMO compared with VL during a stair-stepping task. EMG onsets were determined by using a computer algorithm and were verified visually. Results: In the PFPS population, the EMG onset of VL occurred before that of VMO in both the step up and step down phases of the stair-stepping task (p < .05). In contrast, no such differences occurred in the onsets of EMG activity of VMO and VL in either phase of the task for the control subjects. Conclusion: This finding supports the hypothesized relationship between changes in the timings of activity of the vastimuscles and PFPS. This finding provides theoretical rationale to support physiotherapy treatment commonly used in the management of PFPs.
Resumo:
In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP-without concurrent activity of the abdominal or back extensor muscles-produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to similar to 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (similar to6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
1. The present study investigated the effects of lengthening and shortening actions on IT-reflex amplitude. H-reflexes were evoked in the soleus (SOL) and medial gastroenemius (MG) of human subject, during passive isometric, lengthening and shortening actions performed at angular velocities of 0, +/-2, +/-5 and +/- 15 deg s(-1). 2. H-reflex amplitude, in froth SOL and MG were significantly depressed during passive lengthening actions and facilitated during passive shortening actions, when compared with the isometric R-reflex amplitude. 3. Four experiments were performed in which the latencies front the onset of movement to delivery of the stimulus were altered. Passive H-reflex modulation during lengthening actions was found tee begin at latencies of less than 60 ms suggesting that this inhibition was due to peripheral and/or spinal mechanisms. 4. It is postulated that, the H-reflex modulation seen in the present study is related to the tunic discharge of muscle spindle afferents and the consequent effects of transmission within the la pathway. Inhibition of the H-reflex at less than 60 ms after the onset of muscle lengthening may he attributed to several mechanisms, which cannot be distinguished using the current protocol. These may include the inability to evoke volleys in la fibres that are refractory following muscle spindle discharge during; rapid muscle lengthening, a reduced probability of transmitter release front the presynaptic terminal (homosynaptic post.-activation depression) and presynaptic inhibition of la afferents from plantar flexor agonists. Short latency facilitation of the H-reflex may be attributed to temporal summation of excitatory postsynaptic potentials arising from muscle spindle afferents during rapid muscle lengthening. At longer latencies, presynaptic inhibition of Ia afferents cannot be excluded as a potential inhibitory mechanism.
Resumo:
1. Respiratory activity of the diaphragm and other respiratory muscles is normally co-ordinated with their other functions, such as for postural control of the trunk when the limbs move. The integration may occur by summation of two inputs at the respiratory motoneurons. The present study investigated whether postural activity of the diaphragm changed when respiratory drive increased with hypercapnoea. 2. Electromyographic (EMG) recordings of the diaphragm and other trunk muscles were made with intramuscular electrodes in 13 healthy volunteers. Under control conditions and while breathing through increased dead-space,subjects made rapid repetitive arm movements to disturb the stability of the spine for four periods each lasting 10 s, separated by 50 s. 3. End-tidal CO2, and ventilation increased for the first 60-120 s of the trial then reached a plateau. During rapid arm movement at the start of dead-space breathing, diaphragm EMG became tonic with superimposed modulation at the frequencies of respiration and arm movement. However, when the arm was moved after 60 s of hypercapnoea, the tonic diaphragm EMG during expiration and the phasic activity with arm movement were reduced or absent. Similar changes occurred for the expiratory muscle transversus abdominis, but not for the erector spinae. The mean amplitude of intra-abdominal pressure and the phasic changes with arm movement were reduced after 60 s of hypercapnoea. 4. The present data suggest that increased central respiratory drive may attenuate the postural commands reaching motoneurons. This attenuation can affect the key inspiratory and expiratory muscles and is likely to be co-ordinated at a pre-motoneuronal site.
Resumo:
This paper describes the kinematics and muscle activity associated with the standard sit-up, as a first step in the investigation of complex motor coordination. Eight normal human subjects lay on a force table and performed at least 15 sit-ups, with the arms across the chest and the legs straight and unconstrained. Several subjects also performed sit-ups with an additional weight added to the head. Support surface forces were recorded to calculate the location of the center of pressure and center of gravity; conventional motion analysis was used to measure segmental positions; and surface EMG was recorded from eight muscles. While the sit-up consists of two serial components, 'trunk curling' and 'footward pelvic rotation', it can be further subdivided into five phases, based on the kinematics. Phases I and II comprise trunk curling. Phase I consists of neck and upper trunk flexion, and phase II consists of lumbar trunk lifting. Phase II corresponds to the point of peak muscle contraction and maximum postural instability, the 'critical point' of the sit-up. Phases III-V comprise footward pelvic rotation. Phase III begins with pelvic rotation towards the feet. phase W with leg lowering, and phase V with contact between the legs and the support surface. The overall pattern of muscle activity was complex with times of EMG onset, peak activity, offset, and duration differing for different muscles. This complex pattern changed qualitatively from one phase to the next, suggesting that the roles of different muscles and, as a consequence, the overall form of coordination, change during the sit-up. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Recent research has shown that Mulligan's Mobilization With Movement treatment technique for the elbow (MWM), a peripheral joint mobilization technique, produces a substantial and immediate pain relief in chronic lateral epicondylalgia (48% increase in pain-free grip strength).(1) This hypoalgesic effect is far greater than that previously reported with spinal manual therapy treatments, prompting speculation that peripheral manual therapy treatments may differ in mechanism of action to spinal manual therapy techniques. Naloxone antagonism and tolerance studies, which employ widely accepted tests for the identification of endogenous opioid-mediated pain control mechanisms, have shown that spinal manual therapy-induced hypoalgesia does not involve an opioid mechanism. Objective: The aim of this study was to evaluate the effect of naloxone administration on the hypoalgesic effect of MWM. Methods: A randomized, controlled trial evaluated the effect of administering naloxone, saline, or no-substance control injection on the MWM-induced hypoalgesia in 18 participants with lateral epicondylalgia. Pain-free grip strength, pressure pain threshold, thermal pain threshold, and upper limb neural tissue provocation test 2b were the outcome measures. Results: The results demonstrated that the initial hypoalgesic effect of the MWM was not antagonized by naloxone, suggesting a nonopioid mechanism of action. Conclusions: The studied peripheral mobilization treatment technique appears to have a similar effect profile to previously studied spinal manual therapy techniques, suggesting a nonopioid-mediated hypoalgesia following manual therapy.
Resumo:
Bees generate thoracic vibrations with their indirect flight muscles in various behavioural contexts. The main frequency component of non-flight vibrations, during which the wings are usually folded over the abdomen, is higher than that of thoracic vibrations that drive the wing movements for flight. So far, this has been concluded from an increase in natural frequency of the oscillating system in association with the wing adduction. In the present study, we measured the thoracic oscillations in stingless bees during stationary flight and during two types of non-flight behaviour, annoyance buzzing and forager communication, using laser vibrometry. As expected, the flight vibrations met all tested assumptions for resonant oscillations: slow build-up and decay of amplitude; increased frequency following reduction of the inertial load; and decreased frequency following an increase of the mass of the oscillating system. Resonances, however, do not play a significant role in the generation of non-flight vibrations. The strong decrease in main frequency at the end of the pulses indicates that these were driven at a frequency higher than the natural frequency of the system. Despite significant differences regarding the main frequency components and their oscillation amplitudes, the mechanism of generation is apparently similar in annoyance buzzing and forager vibrations. Both types of non-flight vibration induced oscillations of the wings and the legs in a similar way. Since these body parts transform thoracic oscillations into airborne sounds and substrate vibrations, annoyance buzzing can also be used to study mechanisms of signal generation and transmission potentially relevant in forager communication under controlled conditions.