836 resultados para Efficiency and Goals
Resumo:
Experimental, analytical and simulated data are presented in this article to assess the performance of electrodeposited nickel-iron within a novel solenoid microinductor. A design flowchart highlights the primary design principles when developing a microscale magnetic component for DC-DC power converters. Thermal modeling is used to predict the operational conditions that generate undesirable thermal generation within the component. Operating at 0.5MHz, the microinductor achieves an efficiency and power density of 78% and 7.8 W/cm3, respectively.
Resumo:
Purpose: The purpose of this paper is to investigate the impact of different agency practice on agency fees, business efficiency, and housing market liquidity. Design/methodology/approach: The paper studies the effect of sole and multiple agency practices on estate agent efficiency, housing market liquidity, and commission fee levels. The analysis uses the survey data from 2000 to 2006 to investigate the different agency practices across England and Wales and their effect on estate agency business efficiency, housing market liquidity, selling price, and fee levels. Findings: The empirical analysis confirms that agency practice has a locality bias, that is, some regions are more likely to adopt sole agency practice than other regions. The estate agents with a sole agency practice charge a lower agency fee, help clients to achieve better selling price and are more efficient; whereas multiple agency practice facilitates liquidity in the housing market, but experiences higher fall-through rate. Research limitations/implications: The research focuses on estate agent rather than consumers due to the limitation of the data based on a research project concerning transaction costs designed prior to this analysis. Originality/value: There is little other research that investigates the residential estate agency practice and its impact on housing market in the past three decades in England and Wales. The findings are a useful guide for practitioners to better understand the issues associated with different agency practices and should enhance business efficiency and performance.
Resumo:
Based on empirical evidence, the article looks at the implications of private sector participation (PSP) for the delivery of water supply and sanitation to the urban and peri-urban poor in developing countries, with particular reference to Africa and Latin America. More precisely, the article addresses the impact produced by multinational companies’ (MNCs) strategies, in light of the pursuit of profitability, on the extension of connections to the pipeline network. It does so by questioning the assumptions that greater private sector efficiency and innovation, together with contract design, will enable the sustainable extension of service coverage to low income dwellers. The strategies of the major water MNCs are considered both in relation to the global expansion of their operations and the adjustment of local strategies to commercial considerations. The latter might result in identifying proWtable markets, modifying contractual provisions, attempting to reduce costs and increase income, reducing risks and exiting from non-performing contracts. The evidence reviewed allows for re-assessing the relative roles of the public and private sectors in extending and delivering water services to the poor. First, the most far reaching innovative approaches to extending connections are more likely to come from communities, public authorities and political activity than from MNCs. Secondly, whenever MNCs are liable to exit from non-profitable contracts, the public sector has no other option than to deal with external risks aVecting continuity of provision. Finally, market limitations affecting MNCs’ ability to serve marginal populations and access cheap capital do not apply to well-organised, politically led public sector undertakings
Resumo:
Awareness of climate change and adaptations of building stock play a key role in the UK government’s environmental agenda. While some European countries and countries like Japan move forward by bringing their sustainability agenda to the public sector, the UK seems to be slow in embracing these ideas and long term sustainability in improved products and processes for better performance, efficiency and innovative application of renewable technology is yet to come. While funding remains a major constraint research show that a number of detrimental issues including; organisation, risk, mind sets of the stakeholders, planning constraints, reluctance to accept change and the unexploited markets are major contributing factors. Most of these barriers can be overcome with research, development and information and knowledge transfer techniques. Educating all stakeholders can act as an accelerator for innovation. This paper examines innovation in the built environment and how research and education can stimulate this process. It explores drivers and barriers for innovation and how research and education in construction, design, engineering and project management can enhance this process. It presents and discusses lessons learnt from two action research projects in relation to innovation.
Resumo:
Multivariate experiments are used to study the effects of body size, food concentration, and season on the oxygen consumption, ammonia excretion, food assimilation efficiency and filtration rate of Mytilus edulis adults. Food concentrations and season affect both the intercept and the slope of the allometric equation describing oxygen uptake as a function of body size. Multiple regression and response surface techniques are used to describe and illustrate the complex relationship between metabolic rate, ration, season and the body size of M. edulis. Filtration rate has a relatively low weight exponent Q> = 038) and the intercept for the allometric equation is not significantly affected by food concentration, season or acclimation temperatures between 5 and 20 °C. Food assimilation efficiency declines exponentially with increasing food concentration and is dependent on body size at high food levels. The rate of ammonia excretion shows a similar seasonal cycle to that of oxygen consumption. They are both minimal in the autumn/winter and reach a maximum in the spring /summer.
Resumo:
Background: The aim of the SPHERE study is to design, implement and evaluate tailored practice and personal care plans to improve the process of care and objective clinical outcomes for patients with established coronary heart disease (CHD) in general practice across two different health systems on the island of Ireland.CHD is a common cause of death and a significant cause of morbidity in Ireland. Secondary prevention has been recommended as a key strategy for reducing levels of CHD mortality and general practice has been highlighted as an ideal setting for secondary prevention initiatives. Current indications suggest that there is considerable room for improvement in the provision of secondary prevention for patients with established heart disease on the island of Ireland. The review literature recommends structured programmes with continued support and follow-up of patients; the provision of training, tailored to practice needs of access to evidence of effectiveness of secondary prevention; structured recall programmes that also take account of individual practice needs; and patient-centred consultations accompanied by attention to disease management guidelines.
Methods: SPHERE is a cluster randomised controlled trial, with practice-level randomisation to intervention and control groups, recruiting 960 patients from 48 practices in three study centres (Belfast, Dublin and Galway). Primary outcomes are blood pressure, total cholesterol, physical and mental health status (SF-12) and hospital re-admissions. The intervention takes place over two years and data is collected at baseline, one-year and two-year follow-up. Data is obtained from medical charts, consultations with practitioners, and patient postal questionnaires. The SPHERE intervention involves the implementation of a structured systematic programme of care for patients with CHD attending general practice. It is a multi-faceted intervention that has been developed to respond to barriers and solutions to optimal secondary prevention identified in preliminary qualitative research with practitioners and patients. General practitioners and practice nurses attend training sessions in facilitating behaviour change and medication prescribing guidelines for secondary prevention of CHD. Patients are invited to attend regular four-monthly consultations over two years, during which targets and goals for secondary prevention are set and reviewed. The analysis will be strengthened by economic, policy and qualitative components.
Resumo:
In this theoretical paper, the analysis of the effect that ON-state active-device resistance has on the performance of a Class-E tuned power amplifier using a shunt inductor topology is presented. The work is focused on the relatively unexplored area of design facilitation of Class-E tuned amplifiers where intrinsically low-output-capacitance monolithic microwave integrated circuit switching devices such as pseudomorphic high electron mobility transistors are used. In the paper, the switching voltage and current waveforms in the presence of ON-resistance are analyzed in order to provide insight into circuit properties such as RF output power, drain efficiency, and power-output capability. For a given amplifier specification, a design procedure is illustrated whereby it is possible to compute optimal circuit component values which account for prescribed switch resistance loss. Furthermore, insight into how ON-resistance affects transistor selection in terms of peak switch voltage and current requirements is described. Finally, a design example is given in order to validate the theoretical analysis against numerical simulation.
Resumo:
We present a novel approach to goal recognition based on a two-stage paradigm of graph construction and analysis. First, a graph structure called a Goal Graph is constructed to represent the observed actions, the state of the world, and the achieved goals as well as various connections between these nodes at consecutive time steps. Then, the Goal Graph is analysed at each time step to recognise those partially or fully achieved goals that are consistent with the actions observed so far. The Goal Graph analysis also reveals valid plans for the recognised goals or part of these goals. Our approach to goal recognition does not need a plan library. It does not suffer from the problems in the acquisition and hand-coding of large plan libraries, neither does it have the problems in searching the plan space of exponential size. We describe two algorithms for Goal Graph construction and analysis in this paradigm. These algorithms are both provably sound, polynomial-time, and polynomial-space. The number of goals recognised by our algorithms is usually very small after a sequence of observed actions has been processed. Thus the sequence of observed actions is well explained by the recognised goals with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which excellent performance has been achieved in terms of accuracy, efficiency, and scalability.
Resumo:
Northern Ireland's economic performance during the 'golden age' was weak. Crafts suggested that rent-seeking was an important determinant of this poor record. This article offers support for such a conclusion. It is suggested that the growth record was shaped by British regulations preventing conflicts of ministerial interest not being made operational until 1963. This institutional divergence tended to promote rent-seeking behaviour, which impeded the pursuit of an industrial policy that could promote economic efficiency. In 1963 the institutional structure and the industrial policy framework changed. These changes stimulated the pursuit of efficiency and contributed to an improved regional economic performance.
Resumo:
Chitosan nanoparticles fabricated via different preparation protocols have been in recent years widely studied as carriers for therapeutic proteins and genes with varying degree of effectiveness and drawbacks. This work seeks to further explore the polyionic coacervation fabrication process, and associated processing conditions under which protein encapsulation and subsequent release can be systematically and predictably manipulated so as to obtain desired effectiveness. BSA was used as a model protein which was encapsulated by either incorporation or incubation method, using the polyanion tripolyphosphate (TPP) as the coacervation crosslink agent to form chitosan-BSA-TPP nanoparticles. The BSA-loaded chitosan-TPP nanoparticles were characterized for particle size, morphology, zeta potential, BSA encapsulation efficiency, and subsequent release kinetics, which were found predominantly dependent on the factors of chitosan molecular weight, chitosan concentration, BSA loading concentration, and chitosan/TPP mass ratio. The BSA loaded nanoparticles prepared under varying conditions were in the size range of 200-580 nm, and exhibit a high positive zeta potential. Detailed sequential time frame TEM imaging of morphological change of the BSA loaded particles showed a swelling and particle degradation process. Initial burst released due to surface protein desorption and diffusion from sublayers did not relate directly to change of particle size and shape, which was eminently apparent only after 6 h. It is also notable that later stage particle degradation and disintegration did not yield a substantial follow-on release, as the remaining protein molecules, with adaptable 3-D conformation, could be tightly bound and entangled with the cationic chitosan chains. In general, this study demonstrated that the polyionic coacervation process for fabricating protein loaded chitosan nanoparticles offers simple preparation conditions and a clear processing window for manipulation of physiochemical properties of the nanoparticles (e.g., size and surface charge), which can be conditioned to exert control over protein encapsulation efficiency and subsequent release profile. The weakness of the chitosan nanoparticle system lies typically with difficulties in controlling initial burst effect in releasing large quantities of protein molecules. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The radiation efficiency and resonance frequency of five compact antennas worn by nine individual test subjects was measured at 2.45 GHz in a reverberation chamber. The results show that, despite significant differences in body mass, wearable antenna radiation efficiency had a standard deviation less than 0.6 dB and the resonance frequency shift was less than 1% between test subjects. Variability in the radiation efficiency and resonance frequency shift between antennas was largely dependant on body tissue coupling which is related to both antenna geometry and radiation characteristics. The reverberation chamber measurements were validated using a synthetic tissue phantom and compared with results obtained in a spherical near field chamber and finite-difference time-domain (FDTD) simulation.
Resumo:
A recently generalized theory of perceptual guidance (general tau theory) was used to analyse coordination in skilled movement. The theory posits that (i) guiding movement entails controlling closure of spatial and/or force gaps between effecters and goals, by sensing and regulating the tau s of the gaps (the time-to-closure at current closure rate), (ii) a principal way of coordinating movements is keeping the rs of different gaps in constant ratio (known as tau-coupling), and (iii) intrinsically paced movements are guided and coordinated by tau-coupling onto a tau-guide, tau(g), generated in the nervous system and described by the equation tau(g) = 0.5(t-T-2/t) where T is the duration of the body movement and t is the time from the start of the movement. Kinematic analysis of hand to mouth movements by human adults, with eyes open or closed, indicated that hand guidance was achieved by maintaining, during 80-85% of the movement, the tau-couplings tau(alpha)-tau(t) and tau(t)-tau(g), where tau(t) is tau of the hand-mouth gap, tau(alpha) is tau of the angular gap to be closed by steering the hand and tau(g) is an intrinsic tau-guide.
Resumo:
Single-phase microreactors and micro-heat-exchangers have been widely used in industrial and scientific applications over the last decade. In several cases, operation of microreactors has shown that their expected efficiency cannot be reached either due to non-uniform distribution of reactants between different channels or due to flow maldistribution between individual microreactors working in parallel. The latter problem can result in substantial temperature deviations between different microreactors resulting in thermal run away which could arise from an exothermicreaction. Thus advances in the understanding of heat transfer and fluid flow distribution continue to be crucial in achieving improved performance, efficiency and safety in microstructured reactors used for different applications. This paper presents a review of the experimental and numerical results on fluid flow distribution, heat transfer and combination thereof, available in the open literature. Heat transfer in microchannels can be suitably described by standard theory and correlations, but scaling effects (entrance effects, conjugate heat transfer, viscous heating, and temperature-dependent properties) have often to be accounted for in microsystems. Experiments with single channels are in good agreement with predictions from the published correlations. The accuracy of multichannel experiments is lower due to flow maldistribution. Special attention is devoted to theoretical and experimental studies on the effect of a flow maldistribution on the thermal and conversion response of catalytic microreactors. There view concludes with a set of design recommendations aimed at improving the reactor performance. (C) 2010 Elsevier Ltd. All rights reserved.