978 resultados para Economical viability
Resumo:
Biomass Refinery is a sequential of eleven thermochemical processes and one biological process with two initial basic treatments: prehydrolysis for lignocellulosics and low temperature conversion for biomass with medium-to-high content of lipids and proteins. The other ten processes are: effluent treatment plant, furfural plant, biodiesel plant, cellulignin dryer, calcination, fluidized bed boiler, authotermal reforming of cellulignin for syngas production, combined cycle of two-stroke low-speed engine or syngas turbine with fluidized bed boiler heat recovery, GTL technologies and ethanol from cellulose, prehydrolysate and syngas. Any kind of biomass such as wood, agricultural residues, municipal solid waste, seeds, cakes, sludges, excrements and used tires can be processed at the Biomass Refinery. Twelve basic products are generated such as cellulignin, animal feed, electric energy, fuels (ethanol, crude oil, biodiesel, char), petrochemical substitutes, some materials (ash, gypsum, fertilizers, silica, carbon black) and hydrogen. The technology is clean with recovery of energy and reuse of water, acid and effluents. Based on a holistic integration of various disciplines Biomass Refinery maximizes the simultaneous production of food, electric energy, liquid fuels and chemical products and some materials, achieving a competitive position with conventional and fossil fuel technologies, as well as payment capacity for biomass production. Biomass Refinery has a technical economical capability to complement the depletion of the conventional petroleum sources and to capture its GHGs resulting a biomass + petroleum ""green"" combination.
Resumo:
Nickel-based super alloys are used in a variety of applications in which high-temperature strength and resistance to creep, corrosion, and oxidation are required, such as in aircraft gas turbines, combustion chambers, and automotive engine valves. The properties that make these materials suitable for these applications also make them difficult to grind. Grinding systems for such materials are often built around vitrified cBN (cubic boron nitride) wheels to realize maximum productivity and minimum cost per part. Conditions that yield the most economical combination of stock removal rate and wheel wear are key to the successful implementation of the grinding system. Identifying the transition point for excessive wheel wear is important. The aim of this study is to compare the performance of different cBN wheels when grinding difficult-to-grind (DTG) materials by determining the 'wheel wear characteristic curve', which correlates the G-ratio to the calculated tangential force per abrasive grain. With the proposed methodology, a threshold force per grit above which the wheel wear rate increases rapidly can be quickly identified. A comparison of performance for two abrasive product formulations in the grinding of three materials is presented. The obtained results can be applied for the development of grinding applications for DTG materials.
Resumo:
We report first-principles calculations on the electronic and structural properties of chemically functionalized adamantane molecules, either in isolated or crystalline forms. Boron and nitrogen functionalized molecules, aza-, tetra-aza-, bora-, and tetra-bora-adamantane, were found to be very stable in terms of energetics, consistent with available experimental data. Additionally, a hypothetical molecular crystal in a zincblende structure, involving the pair tetra-bora-adamantane and tetra-aza-adamantane, was investigated. This molecular crystal presented a direct and large electronic band gap and a bulk modulus of 20 GPa. The viability of using those functionalized molecules as fundamental building blocks for nanostructure self-assembly is discussed.
Resumo:
The objective of this Study was to describe the financial conditions of forestry contractors, concerning life quality aspects, condition of work and equipments, operational costs, and economic credit to invest in new technologies. Five companies had been analyzed, with an annual income between US$ 400,000.00 and US$ 1,720,000.00, with an average of US$ 950,000.00. The number of employees varied between 33 and 181, and the companies were classified in terms of size as: one small, two average, and two big. The main difficulties to invest in new machines were high financial taxes, more than 12% an year, and a lack of long term contracts to guarantee the payment capability. It was observed that the contractors did not consider the capital remuneration and a correct depreciation of machines, resulting in an average machine life higher than 10 years. The final conclusions were that the costs were above the paid values for the services, when computed the depreciation and capital remuneration, with negative results In the financial analyzes of three companies. Finally, the mechanization process increased the workers life quality, however, the annual income was around US$ 2,112.00 per worker, approximately 39% lower than the average Brazilian population.
Resumo:
The present work had as objective uses a model of lineal programming algorithm to optimize the use of the water in the District of Irrigation Baixo Acarau-CE proposing the best combination of crop types and areas established of 8,0 ha. The model aim maximize the net benefit of small farmer, incorporating the constraints in water and land availability, and constraints on the market. Considering crop types and the constraints, the study lead to the following conclusions: 1. The water availability in the District was not a limiting resources, while all available land was assigned in six of the seven cultivation plans analyzed. Furthermore, water availability was a restrictive factor as compared with land only when its availability was made to reduce to 60% of its actual value; 2. The combination of soursop and melon plants was the one that presented the largest net benefit, corresponding to R$ 5,250.00/ha/yr. The planting area for each crop made up to 50% of the area of the plot; 3. The plan that suggests the substitution of the cultivation of the soursop, since a decrease in annual net revenue of 5.87%. However, the plan that contemplates the simultaneous substitution of both soursop and melon produced the lowest liquid revenue, with reduction of 33.8%.
Resumo:
Background: Cationic bilayers based on the inexpensive synthetic lipid dioctadecyldimethylammonium bromide (DODAB) have been useful as carriers for drug delivery, immunoadjuvants for vaccines and active antimicrobial agents. Methods: Rifampicin (RIF) or isoniazid (ISO) interacted with DODAB bilayer fragments (BF) or large vesicles (LV). Dispersions were evaluated by dynamic light-scattering for zeta-average diameter (Dz) and zeta-potential (zeta) analysis; dialysis for determination of drug entrapment efficiency; plating and CFU counting for determination of cell viability of Mycobacterium smegmatis or tuberculosis, minimal bactericidal concentration (MBC) and synergism index for DODAB/drug combinations. Results: DODAB alone killed micobacteria over a range of micromolar concentrations. RIF aggregates in water solution were solubilised by DODAB BF. RIF was incorporated in DODAB bilayers at high percentiles in contrast to the leaky behavior of ISO. Combination DODAB/RIF yielded MBCs of 2/2 and 4/0.007 mu g/mL against Mycobacterium smegmatis or Mycobacterium tuberculosis, respectively. Synergism indexes equal to 0.5 or 1.0, indicated synergism against the former and independent action, against the latter species. Conclusions: In vitro, DODAB acted effectively both as micobactericidal agent and carrier for rifampicin. The novel assemblies at reduced doses may become valuable against tuberculosis.
Resumo:
Background: The criteria and timing for nerve surgery in infants with obstetric brachial plexopathy remain controversial. Our aim was to develop a new method for early prognostic assessment to assist this decision process. Methods: Fifty-four patients with unilateral obstetric brachial plexopathy who were ten to sixty days old underwent bilateral motor-nerve-conduction studies of the axillary, musculocutaneous, proximal radial, distal radial, median, and ulnar nerves. The ratio between the amplitude of the compound muscle action potential of the affected limb and that of the healthy side was called the axonal viability index. The patients were followed and classified in three groups according to the clinical outcome. We analyzed the receiver operating characteristic curve of each index to define the best cutoff point to detect patients with a poor recovery. Results: The best cutoff points on the axonal viability index for each nerve (and its sensitivity and specificity) were <10% (88% and 89%, respectively) for the axillary nerve, 0% (88% and 73%) for the musculocutaneous nerve, <20% (82% and 97%) for the proximal radial nerve, <50% (82% and 97%) for the distal radial nerve, and <50% (59% and 97%) for the ulnar nerve. The indices from the proximal radial, distal radial, and ulnar nerves had better specificities compared with the most frequently used clinical criterion: absence of biceps function at three months of age. Conclusions: The axonal viability index yields an earlier and more specific prognostic estimation of obstetric brachial plexopathy than does the clinical criterion of biceps function, and we believe it may be useful in determining surgical indications in these patients.
Resumo:
Cells normally undergo physiological turnover through the induction of apoptosis and phagocytic removal, partly through exposure of cell surface phosphatidylserine (PS). In contrast, neutrophils appear to possess apoptosis-independent mechanisms of removal. Here we show that Galectin-1 (Gal-1) induces PS exposure independent of alterations in mitochondrial potential, caspase activation, or cell death. Furthermore, Gal-1-induced PS exposure reverts after Gal-1 removal without altering cell viability. Gal-1-induced PS exposure is uniquely microdomain restricted, yet cells exposing PS do not display evident alterations in membrane morphology nor do they exhibit bleb formation, typically seen in apoptotic cells. Long-term exposure to Gal-1 prolongs PS exposure with no alteration in cell cycle progression or cell growth. These results demonstrate that Gal-1-induced PS exposure and subsequent phagocytic removal of living cells represents a new paradigm in cellular turnover.
Resumo:
This study investigates the kinetics of acidification, fatty acid (FA) profile and conjugated linoleic acid (CLA, C18:2 c9, t11) content in fermented milks prepared from organic and conventional milk. Fermented milks were manufactured with five mixed cultures: four different strains of Bifidobacterium animalis subsp. lactis (BL04, B94, BB12 and HN019) and Lactobacillus delbrueckii subsp. bulgaricus LB340, in co-culture with Streptococcus thermophilus TA040. The composition of milk was evaluated, and the kinetics of acidification was followed by continuous pH measurement using the Cinac system. The profile of FA, including CLA, was analyzed by gas chromatography. The chemical composition of conventional and organic milk was similar, with the exception of protein and Fe, the concentrations of which were higher in the organic milk. The rate of acidification was significantly influenced by the type of milk and the bacterial strain used. Co-cultures St-HN019 and St-BB12 showed higher maximal acidification rates in both milks. Final counts of S. thermophilus (9.0-10.1 log(10) colony forming units (CFU) . mL(-1), L)actobacillus bulgaricus (8.2-8.5 log(10) CFU . mL(-1)) and B. animalis subsp. lactis strains (8.3-9.3 log(10) CFU . mL(-1)) did not differ significantly in either milk. Unexpectedly, all fermented organic milks contained significantly higher amounts of CLA than the same milk before fermentation, whereas CLA amounts did not change during fermentation of conventional milk. Regardless of the type of milk, CLA was found to be significantly positively correlated with trans-vaccenic acid and negatively correlated with linoleic acid. Moreover, the CLA contents were significantly higher in fermented milks showing shorter fermentation times.
Resumo:
Polylactic-co-glycolic nanocapsules, loaded with nanosized magnetic particles and Selol (a selenium-based anticancer drug), were successfully prepared by the precipitation method. Maghemite (gamma-Fe(2)O(3)) nanoparticles were incorporated into the nanocapsules using a highly stable ionic magnetic fluid sample. The obtained nanocapsules presented no agglomeration, negative surface charge while revealing a narrow monomodal size distribution. All the nanocapsule formulations exhibited a good physical stability at 4 degrees C during 3 month storage period. The in vitro antitumoral activity of Selol-magnetic nanocapsules was assessed using a murine melanoma cell line. The influence of nanocapsules on cell viability was investigated by spectrophotometric assay. The results demonstrated that Selol-loaded magnetic nanocapsules (at 100 mu g/ml/5 x 10(9) particle/ml) showed antitumoral activity of 50% on melanoma cells (absence of magnetic field). These results clearly indicate that the loaded nanocapsules represent a novel and promising magnetic drug delivery system suitable for cancer treatment via the active drug and magnetohyperthermia. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3556950]
Resumo:
Background: The magnetic albumin nanosphere (MAN), encapsulating maghemite nanoparticles, was designed as a magnetic drug delivery system (MDDS) able to perform a variety of biomedical applications. It is noteworthy that MAN was efficient in treating Ehrlich's tumors by the magnetohyperthermia procedure. Methods and materials: In this study, several nanotoxicity tests were systematically carried out in mice from 30 minutes until 30 days after MAN injection to investigate their biocompatibility status. Cytometry analysis, viability tests, micronucleus assay, and histological analysis were performed. Results: Cytometry analysis and viability tests revealed MAN promotes only slight and temporary alterations in the frequency of both leukocyte populations and viable peritoneal cells, respectively. Micronucleus assay showed absolutely no genotoxicity or cytotoxicity effects and histological analysis showed no alterations or even nanoparticle clusters in several investigated organs but, interestingly, revealed the presence of MAN clusters in the central nervous system (CNS). Conclusion: The results showed that MAN has desirable in vivo biocompatibility, presenting potential for use as a MDDS, especially in CNS disease therapy.
Resumo:
Certain areas of the city of Sao Paulo, as many others around the world, including in Lisbon, Barcelona and Buenos Aires, have been going through a process of requalification, in special the ones commonly known as old and/or traditional city. Regarding Sao Paulo, some exceptional actions have been taken downtown with investments in rehabilitation/requalification of areas that concentrated the historical, urbanistic and cultural heritages, such as Praca da S and its cathedral, as well as the revaluation/rehabilitation projects of other squares like Praca da Republica, other areas as the previously called Cracolandia (due to high consumption/deal of crack), known today as Nova Luz, besides propositions to reevaluate areas already modified, such as Vale do Anhangabau. In all propositions to modify sites, it is firstly underlined its deterioration, litter and the presence of low-income populations (passer-bys, street vendors or residents), generally stigmatized as ""potential suspects"", emphasizing danger and lack of security in those places. This belief, which has become consensual, results in that: public as well as private companies promote the rehabilitation of the areas basing their reasoning in the necessity of adding value to the existing urban heritage, although, as it will be discussed in this paper, part of this heritage might be destroyed in this very process, under the allegation that upon completion, the action would allow the social, cultural and economical revaluation/requalification of the area. This paper is intended to provide a contribution to this discussion.
Resumo:
Among the numerous problems that are common to the Latin-American metropolises, such as the deep socio-spatial segregation, the impressive territorial fragmentation and the real estate valorisation that overvalues some territories, whilst it depreciates others, we have chosen to focus on the management of the metropolitan regions. That question clearly indicates that due to the great current changes of the economical restructuring - a process that strengthened the capitalist logic of social development - the traditional form of thinking urban planning has found its limits. Consequently, this issue of metropolitan management shows the need to look for new ways of metropolitan administration that can answer to the The main metropolitan regions of South America: Buenos Aires, Sao Paulo and Santiago form our references to characterize the recent changes from a territorial point of view on the one hand; and relative to the new determinations of the metropolis on the other hand. This leads us to discuss the challenges that metropolitan management face in a scenario of governability fragmentation.
Resumo:
The objective of this manuscript is to discuss the existing barriers for the dissemination of medical guidelines, and to present strategies that facilitate the adaptation of the recommendations into clinical practice. The literature shows that it usually takes several years until new scientific evidence is adopted in current practice, even when there is obvious impact in patients' morbidity and mortality. There are some examples where more than thirty years have elapsed since the first case reports about the use of a effective therapy were published until its utilization became routine. That is the case of fibrinolysis for the treatment of acute myocardial infarction. Some of the main barriers for the implementation of new recommendations are: the lack of knowledge of a new guideline, personal resistance to changes, uncertainty about the efficacy of the proposed recommendation, fear of potential side-effects, difficulties in remembering the recommendations, inexistence of institutional policies reinforcing the recommendation and even economical restrains. In order to overcome these barriers a strategy that involves a program with multiple tools is always the best. That must include the implementation of easy-to-use algorithms, continuous medical education materials and lectures, electronic or paper alerts, tools to facilitate evaluation and prescription, and periodic audits to show results to the practitioners involved in the process. It is also fundamental that the medical societies involved with the specific medical issue support the program for its scientific and ethical soundness. The creation of multidisciplinary committees in each institution and the inclusion of opinion leaders that have pro-active and lasting attitudes are the key-points for the program's success. In this manuscript we use as an example the implementation of a guideline for venous thromboembolism prophylaxis, but the concepts described here can be easily applied to any other guideline. Therefore, these concepts could be very useful for institutions and services that aim at quality improvement of patient care. Changes in current medical practice recommended by guidelines may take some time. However, if there is a broader participation of opinion leaders and the use of several tools listed here, they surely have a greater probability of reaching the main objectives: improvement in provided medical care and patient safety.
Resumo:
Background: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings: (99m)Tc-labeled ASCs (1 x 10(6) cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers.