924 resultados para ETHANOL CONSUMPTION
Resumo:
When using appropriate inflation pressures and load capacity (ballast), it may obtain a higher yield and prolongation of the life of the tire, besides it may minimize the problems of loss of traction, increased slippage and fuel consumption. This study aimed to evaluate the fuel consumption of a tractor operating with new and worn tires in three conditions of ballasting and three inflation pressures, when driving on compacted soil with vegetation cover. The experiment was conducted at the experimental unit from the Department of Animal Science, Federal University of Lavras, state of Minas Gerais, Brazil, in an agricultural soil compacted by cattle trampling and with vegetation cover. It was used a tractor 4x2 with front wheel assist, of a 65.62 kW engine power. The tires were of R1 type, diagonal (front: 12.4 to 24; and rear: 18.4 to 30), the average height of the clutches of the new tires were 0.3 and 0.35 m for front and rear tires, respectively, and for the worn tires were 0.018 and 0.0045 m, for the front and the rear tires, respectively. The results showed advantages for the tractor equipped with new tires.
Resumo:
Under organic management in Seropédica-RJ, Brazil, using a weighing lysimeter, the crop coefficients (kc), the maximum evapotranspiration and the productivity of eggplant cultivation under two cropping systems (no tillage with straw plus soil with conventional preparation) were determined. A whole randomized layout with two treatments (no tillage and conventional) and five replicates during 134 days of cultivation were adopted. There were no significant differences in the eggplant cultivation in the two cropping systems, with a maximum commercial productivity obtained from 47.42 Mg ha-1 for the no-tillage system, and 47.91 Mg ha-1 for the conventional tillage. The accumulated ETc was 285.15 and 323.44 mm for the no-tillage and conventional, respectively. The crop coefficients value for the phases: 1 - transplanting, flowering, 2 - flowering-fruiting, 3 - fruit- first harvesting, 4- first harvesting of the final crop cycle was 0.83, 0.77, 0.90 and 0.97 in no-tillage system for the respective phases and for the conventional one 0.81, 1.14, 1.17 and 1.05 for the same steps described above.
Resumo:
OBJECTIVE: to assess alcohol intake in the bariatric surgery pre and postoperative periods. METHODS: Patients were interviewed atSurgery Clinic of the Hospital das Clínicas da Universidade Federal de Pernambuco - HC/UFPE (Brazil) from July 2011 to March 2012. We analyzed socioeconomic, anthropometric and clinical variables. We used the Alcohol Use Disorders Identification Test (AUDIT C). RESULTS: One hundred nineteen patients were enrolled (mean age: 41.23+11.30 years), with a predominance of the female gender (83.2%), non-Caucasian race (55%), married individuals or in a stable union (65.5%), with a high school education (40.3%)and active in the job market (37%). Weight and body mass index (BMI) were 128.77+25.28Kg and 49.09+9.26Kg/m2,respectively in the preoperative period (class II obesity) and 87.19+19.16Kg and 33.04+6.21Kg/m2, respectively in the postoperative period (class I obesity) (p<0.001). Hypertension was the most frequent disease in the pre (66.6%) and postoperative (36.5%) periods. The prevalence of alcohol use was 26.6% in the preoperative period, of which 2.2% of high risk, and 35.1% in the postoperative period, of which 1.4% of probable dependence; this difference did not achieve statistical significance (p=0.337). CONCLUSION: The prevalence of abusive alcohol intake and/or probable dependence was low in both the pre and postoperative periods, with little evidence of risky consumption among the patients submitted to bariatric surgery.
Resumo:
This study examines appearance-related consumption in Finland. The theoretical portion discusses appearance-related consumption, on one hand from a consumer culture perspective, as both a possibility and responsibility for everyone; and on the other hand, from the point of view of behaviour and attitudes associated with sociodemographic and lifestyle-related factors. The empirical part of the study concentrates on the following aspects: 1) Finns’ appearance-related consumption patterns, attitudes towards appearance-related consumption and attending to one’s looks through consumption, as well as general changes in consumption patterns and attitudes; 2) gender differences in attitudes and consumption patterns, and their possible changes over time, and; 3) other differences among population groups in attitudes and consumption patterns, and their possible changes over time. The following dissertation utilises data from seven different nationally representative surveys. Data include Finnish Household Budget surveys from 1998 (N=4 359), 2001 (N=5 495) and 2006 (N=4 007), as well as, The Everyday Life and Well-being Survey (N=908) collected in 2011, and Finland 1999 (N=2 417), Finland 2004 (N=3 574) and Finland 2009 (N=1 202) surveys. The study indicates that Finns’ relationship to appearance-related consumption is, generally, somewhat inconsistent. In Finland, a significant share of a household’s total spending, around the EU average, is allocated to products and services related to appearance. In addition, at an attitudinal level, physical appearance is important to most Finnish consumers. However, in many respects, these attitudes reflect a certain reservation towards appearance-related consumption practices. The number of those consumers who see themselves as truly dedicated to attending to their looks through consumption is quite small, whereas the amount of those willing to take a reserved or even negative attitude towards appearance-related consumption is clearly higher. Attitudes towards attending to one’s looks and the importance of appearance-related consumption had not changed during the past decade. Study shows that at present, appearance-related consumption is a form of consumption that is particularly important to women, younger consumers, people with middle or higher income, and those with normal weight. Gender is in the key role when explaining appearance-related consumption and contrary to common belief, gender differences seem to have stayed quite stable. The results also indicate that, to some extent, differences between younger and older age groups might be diminishing.
Resumo:
Bio-ethanol has been used as a fuel additive in modern society aimed at reducing CO2-emissions and dependence on oil. However, ethanol is unsuitable as fuel supplement in higher proportions due to its physico-chemical properties. One option to counteract the negative effects is to upgrade ethanol in a continuous fixed bed reactor to more valuable C4 products such as 1-butanol providing chemical similarity with traditional gasoline components. Bio-ethanol based valorization products also have other end-uses than just fuel additives. E.g. 1-butanol and ethyl acetate are well characterised industrial solvents and platform chemicals providing greener alternatives. The modern approach is to apply heterogeneous catalysts in the investigated reactions. The research was concentrated on aluminium oxide (Al2O3) and zeolites that were used as catalysts and catalyst supports. The metals supported (Cu, Ni, Co) gave very different product profiles and, thus, a profound view of different catalyst preparation methods and characterisation techniques was necessary. Additionally, acidity and basicity of the catalyst surface have an important role in determining the product profile. It was observed that ordinary determination of acid strength was not enough to explain all the phenomena e.g. the reaction mechanism. One of the main findings of the thesis is based on the catalytically active site which originates from crystallite structure. As a consequence, the overall evaluation of different by-products and intermediates was carried out by combining the information. Further kinetic analysis was carried out on metal (Cu, Ni, Co) supported self-prepared alumina catalysts. The thesis gives information for further catalyst developments aimed to scale-up towards industrially feasible operations.
Resumo:
ABSTRACTThe objective of this study was to evaluate the consumption potential, food preference and use of snail Pomacea canaliculata as a biocontrol agent of four submerged aquatic macrophytes (Ceratophyllumdemersum, Egeriadensa, Egerianajas and Hydrilla verticillata). Two experiments were performed. In the first experiment, the introduction of a snail took place and 10 grams of each macrophyte in plastic containers with 1 liter of water. The assessments of consumption by the snail were performed at each 48 hours, during 12 days. The second experiment was performed in 600 liters microcosms containing five snails in each experimental unit. Fifty grams of each macrophyte were offered the snails at the same time, adding the same amounts after seven, 14, 21 and 30 days. On both trials, the most consumed macrophyte by the P.canaliculata was H.verticillata (7.64 ± 1.0 g 48 h and 50 ± 0.18 g) respectively, significantly differing from the others. However, in the absence of H.verticilata, E.najas and E.densa were consumed. The preference of P.canaliculata for H.verticillata is very interesting, because this plant is exotic and problematic in Brazil, and the snail is one more tool for biological management of submerged aquatic macrophyte H.verticillata.
Resumo:
Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.
Resumo:
The effect of dexamethasone on ethanol-induced hypothermia was investigated in 3.5-month old male Wistar rats (N = 10 animals per group). The animals were pretreated with dexamethasone (2.0 mg/kg, ip; volume of injection = 1 ml/kg) 15 min before ethanol administration (2.0, 3.0 and 4.0 g/kg, ip; 20% w/v) and the colon temperature was monitored with a digital thermometer 30, 60 and 90 min after ethanol administration. Ethanol treatment produced dose-dependent hypothermia throughout the experiment (-1.84 ± 0.10, -2.79 ± 0.09 and -3.79 ± 0.15oC for 2.0, 3.0 and 4.0 g/kg ethanol, respectively, 30 min after ethanol) but only the effects of 2.0 and 3.0 g/kg ethanol were significantly antagonized (-0.57 ± 0.09 and -1.25 ± 0.10, respectively, 30 min after ethanol) by pretreatment with dexamethasone (ANOVA, P<0.05). These results are in agreement with data from the literature on the rapid antagonism by glucocorticoids of other effects of ethanol. The antagonism was obtained after a short period of time, suggesting that the effect of dexamethasone is different from the classical actions of corticosteroids
Resumo:
The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg), pentobarbital (17-33 mg/kg), and thiopental (7.5-30 mg/kg), of the benzodiazepine midazolam (10 mg/kg) or of ethanol (0.4-1.6 g/kg) administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg) administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg) treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP), which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system
Resumo:
The objective of the present experiment was to assess ethyl alcohol (ETOH) dependence brought about by a semivoluntary intermittent intake regimen in rats. Male Wistar rats weighing 150-250 g at the onset of the experiment were assigned to the following groups: 0% ETOH (N = 11), 5% ETOH (N = 20), 20% ETOH (N = 20) and 40% ETOH (N = 18). ETOH solutions were offered at the end of the day and overnight from Monday to Friday, and throughout weekends, for 90 days. The concentration of the ETOH solutions was increased in a stepwise fashion allowing the rats to get used to the taste of alcohol. Reposition of pure water was permitted during 1-h water drinking periods in the morning. Daily volume intake (± SEM) averaged 25.4 ± 0.4 ml (0% ETOH), 23.8 ± 0.6 ml (5% ETOH), 17.6 ± 0.7 ml (20% ETOH) and 17.5 ± 0.6 ml (40% ETOH). ETOH consumption differed significantly (P<0.05) among groups, averaging 4.4 ± 0.2 g kg-1 day-1 (5% ETOH), 10.3 ± 0.3 g kg-1 day-1 (20% ETOH) and 26 ± 1.2 g kg-1 day-1 (40% ETOH). Furthermore, ETOH detection in plasma 10-12 h after offering the solution indicated that its consumption in the 40% ETOH group was sufficient to override its metabolism. Overt signs of ETOH dependence, such as increased thirst, hyperactivity, puffing, hair ruffling and startle responsiveness as well as reduced drowsiness, were significantly increased in the 20% and 40% ETOH groups compared to the 0% and 5% groups. Accordingly, the model described here proved to be a useful tool for the evaluation of subtle or moderate behavioral and physical consequences of long-term ETOH intake
Resumo:
The present study deals with a species of enteropneust, Glossobalanus crozieri, focusing on two aspects of its respiration: a) oxygen consumption and body mass, and b) the influence of environmental oxygen tension on the respiratory rate. Preliminarily, the body water content was shown to be 85% of the whole body weight. The regression coefficient of the oxygen consumption on the wet body mass (0.578) seems to agree with the view that in enteropneusts respiration is mainly cutaneous. The respiratory rate was significantly reduced at O2 tensions from 76 mmHg downwards, suggesting conformity rather than regulation