715 resultados para ELECTROCHEMISTRY
Resumo:
Imprint varies: -1951, Weinheim, Verlag Chemie.
Resumo:
Title from cover.
Resumo:
Translation of v. 3 of Lärbok i kemien.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Title from cover.
Resumo:
Title from cover.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The stepped rotating cylinder electrode (SRCE) geometry has been developed as a simple aid to the practical study of the flow-enhanced corrosion and applied electrochemistry problems commonly observed under conditions of disturbed, turbulent flow. The electrodeposition of cupric ions from an acid sulphate plating bath has been used to characterise differential rates of mass transfer to the SRCE. The variation in thickness of electrodeposited copperfilms has allowed the mapping of local rates of mass transfer over the active surface of this geometry. Both optical and scanning electron microscopy were used for the examination of metallographic sections to provide a high resolution evaluation of the distribution of mass transfer coefficient. Results are also discussed using the convective-diffusion model in combination with the existing direct numerical flow simulation (DNS) data for this geometry.
Resumo:
This paper presents the results of an electrochemical study of the anodic characteristics of arsenopyrite in strongly alkaline solutions and of the cathodic reduction of ferrate( VI) and of dissolved oxygen at an arsenopyrite surface at potentials which are relevant to the oxidation reactions. Cyclic voltammetry at both arsenopyrite disc and arsenopyrite disc/platinum ring electrodes has shown that arsenic(III) is the main product of the anodic process at potentials in the region of the rest potential during oxidation by either ferrate( VI) or oxygen. Evidence for partial passivation of both the anodic and cathodic reactions has been obtained from potentiostatic current - time transients. The initial stage of oxidation by ferrate( VI) has been shown to be mass-transport controlled and this is also true of the oxidation by oxygen in dilute solutions of sodium hydroxide.
Resumo:
In dimethylsulfoxide reductase of Rhodobacter capsulatus tryptophan-116 forms a hydrogen bond with a single oxo ligand bound to the molybdenum ion. Mutation of this residue to phenylalanine affected the UV/visible spectrum of the purified Mo-VI form of dimethylsulfoxide reductase resulting in the loss of the characteristic transition at 720 nm. Results of steady-state kinetic analysis and electrochemical studies suggest that tryptophan 116 plays a critical role in stabilizing the hexacoordinate monooxo Mo-VI form of the enzyme and prevents the formation of a dioxo pentacoordinate Mo-VI species, generated as a consequence of the dissociation of one of the dithiolene ligands of the molybdopterin cofactor from the Mo ion. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
A finite difference method for simulating voltammograms of electrochemically driven enzyme catalysis is presented. The method enables any enzyme mechanism to be simulated. The finite difference equations can be represented as a matrix equation containing a nonlinear sparse matrix. This equation has been solved using the software package Mathematica. Our focus is on the use of cyclic voltammetry since this is the most commonly employed electrochemical method used to elucidate mechanisms. The use of cyclic voltammetry to obtain data from systems obeying Michaelis-Menten kinetics is discussed, and we then verify our observations on the Michaelis-Menten system using the finite difference simulation. Finally, we demonstrate how the method can be used to obtain mechanistic information on a real redox enzyme system, the complex bacterial molybdoenzyme xanthine dehydrogenase.