984 resultados para EEG, Tilt, Zero gravity, Weightlessness, Brain hemodynamics
Resumo:
clinical presentation is self limited. It is classified into five groups (genogroups I through V). There are numerous reports of neurologic complications, namely afebrile seizures, but only two reports of associated encephalopathy. Case Report: A 12 month old girl with previous history of a pneumonia treated with amoxicillin-clavulanic acid and clarythromycin, presented in our emergency department with strabismus, ataxia for 3 days, later associated with vomiting and diarrhea. On admission she had ataxia and an episode of strabismus, but her later neurologic exam was normal. Laboratory data revealed: 10,9 g/dL hemoglobin, 11.200/μL leukocytes, 29,1% neutrophils and 65,2% lymphocytes, 488.000/μL platelets and negative CRP. The brain MRI showed middle ear, maxillary sinus and ethmoidal opacification, with no other abnormalities. During the first day of admission she had a tonic (?) seizure for 20 minutes. CSF analysis showed 5,6 cells/μL, 100% lymphocytes, 80 mg/dL glucose and 154,1 mg/dL protein. The EEG revealed short duration paroxystic activity located to the vertex. She was treated with acyclovir, ciprofloxacin, cefthriaxone and phenytoin. Her symptoms resolved by the third day of admission. Blood samples were tested for numerous pathogens, including serology for Borrelia, which was positive for IgG but negative for IgM. Fecal sample analysis revealed positive PCR for norovirus, although it was negative in CSF samples. IL-6 was measured in the CSF and was negative (5,8 pg/mL). She had a history of recurrent otitis media and pernieal candidiasis, which led to a detailed immune function study, which showed Immunology tests revealed diminished IgA (< 0,244 g/L) and absent antibody response to vaccinations. Since she was only 13 months old when she was tested, only follow up will determine the relevance of these values. Follow up at two years of age showed no delays and a normal development. Conclusion: Norovirus encephalitis is a rare entity, although gastrointestinal infection with this agent is relatively common. Here we present a case of a probable norovirus associated encephalopathy, although PCR for norovirus was negative in CSF samples and there was no CSF cytokine increase. It was not associated with adverse neurologic outcome and so far her development is normal, unlike the evolution described in previous case reports.
Resumo:
Objective: Localizing epileptic foci in posterior brain epilepsy remains a difficult exercise in surgery for epilepsy evaluation. Neither clinical manifestations, neurological, EEG nor neuropsychological evaluations provide strong information about the area of onset, and fast spread of paroxysms often produces mixed features of occipital, temporal and parietal symptoms. We investigated the usefulness of the N170 event-related potential to map epileptic activity in these patients. Methods: A group of seven patients with symptomatic posterior cortex epilepsy were submitted to a high-resolution EEG (78 electrodes), with recordings of interictal spikes and face-evoked N170. Generators of spikes and N170 were localized by source analysis. Range of normal N170 asymmetry was determined in 30 healthy volunteers. Results: In 3 out of 7 patients the N170 inter-hemispheric asymmetry was outside control values. Those were the patients whose spike sources were nearest (within 3 cm) to the fusiform gyrus, while foci further away did not affect the N170 ratio. Conclusions: N170 event-related potential provides useful information about focal cortical dysfunction produced by epileptic foci located in the close neighborhood of the fusiform gyrus, but are unaffected by foci further away. Significance: The N170 evoked by faces can improve the epileptic foci localization in posterior brain epilepsy.
Resumo:
Based on the report for the “Project III” unit of the PhD programme on Technology Assessment under the supervision of Prof. António B. Moniz. This report was discussed also at the 2nd Winter School on Technology Assessment held at Universidade Nova de Lisboa, Caparica Campus, Portugal on December 2011.
Resumo:
A Sociedade Europeia de Pesquisa do Sono realizou muito recentemente um estudo, onde mostrou que a prevalência média de adormecimento ao volante nos últimos 2 anos foi de 17%. Além disto, tem sido provado por todo o mundo que a sonolência durante a condução é uma das principais causas de acidentes de trânsito. Torna-se assim conveniente, o desenvolvimento de sistemas que analisem a suscetibilidade de um determinado condutor para adormecer no trânsito, bem como de ferramentas que monitorem em tempo real o estado físico e mental do condutor, para alertarem nos momentos críticos. Apesar do estudo do sono se ter iniciado há vários anos, a maioria das investigações focaram-se no ciclo normal do sono, estudando os indivíduos de forma relaxada e de olhos fechados. Só mais recentemente, têm surgido os estudos que se focam nas situações de sonolência em atividade, como _e o caso da condução. Uma grande parte Dos estudos da sonolência em condução têm utilizado a eletroencefalografia (EEG), de forma a perceber se existem alterações nas diferentes bandas de frequência desta, que possam indicar o estado de sonolência do condutor. Além disso, a evolução da sonolência a partir de alterações no piscar dos olhos (que podem ser vistas nos sinais EEG) também tem sido alvo de grande pesquisa, tendo vindo a revelar resultados bastante promissores. Neste contexto e em parceria com a empresa HealthyRoad, esta tese está integrada no projeto HealthyDrive, que visa o desenvolvimento de um sistema de alerta e deteção de sinais de fadiga e sonolência nos condutores de veículos automóveis. A contribuição desta tese no projeto prendeu-se com o estudo da sonolência dos indivíduos em condução a partir de sinais EEG, para desta forma investigar possíveis indicadores dos diferentes níveis desta que possam ser utilizados pela empresa no projeto. Foram recolhidos e analisados 17 sinais EEG de indivíduos em simulação de condução. Além disso foram desenvolvidos dois métodos de análise destes sinais: O primeiro para a deteção e análise dos piscar de olhos a partir de EEG, o segundo para análise do espetro de potência. Ambos os métodos foram utilizados para analisar os sinais recolhidos e investigar que tipo de relação existe entre a sonolência do condutor e as alterações nos piscares dos olhos, bem como as alterações do espetro do EEG. Os resultados mostraram uma correlação entre a duração do piscar de olhos e a sonolência do condutor. Com o aumento da sonolência velicou-se um aumento da duração do piscar, desencadeado principalmente pelo aumento na duração de fecho, que chegou aos 51.2%. Em relação ao espectro de potência, os resultados sugerem que a potência relativa de todas as bandas analisadas fornecem informações relevantes sobre a sonolência do condutor. Além disso, o parâmetro (_+_)/_ demostrou estar relacionado com variações da sonolência, diminuindo com o seu avanço e aumentando significativamente (111%) no instante em que os condutores adormeceram.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Objective: The epilepsy associated with the hypothalamic hamartomas constitutes a syndrome with peculiar seizures, usually refractory to medical therapy, mild cognitive delay, behavioural problems and multifocal spike activity in the scalp electroencephalogram (EEG). The cortical origin of spikes has been widely assumed but not specifically demonstrated. Methods: We present results of a source analysis of interictal spikes from 4 patients (age 2–25 years) with epilepsy and hypothalamic hamartoma, using EEG scalp recordings (32 electrodes) and realistic boundary element models constructed from volumetric magnetic resonance imaging (MRIs). Multifocal spike activity was the most common finding, distributed mainly over the frontal and temporal lobes. A spike classification based on scalp topography was done and averaging within each class performed to improve the signal to noise ratio. Single moving dipole models were used, as well as the Rap-MUSIC algorithm. Results: All spikes with good signal to noise ratio were best explained by initial deep sources in the neighbourhood of the hamartoma, with late sources located in the cortex. Not a single patient could have his spike activity explained by a combination of cortical sources. Conclusions: Overall, the results demonstrate a consistent origin of spike activity in the subcortical region in the neighbourhood of the hamartoma, with late spread to cortical areas.
Resumo:
Objective: Gelastic seizures are a frequent and well established manifestation of the epilepsy associated with hypothalamic hamartomas. The scalp EEG recordings very seldom demonstrate clear spike activity and the information about the ictal epilepsy dynamics is limited. In this work, we try to isolate epileptic rhythms in gelastic seizures and study their generators. Methods: We extracted rhythmic activity from EEG scalp recordings of gelastic seizures using decomposition in independent components (ICA) in three patients, two with hypothalamic hamartomas and one with no hypothalamic lesion. Time analysis of these rhythms and inverse source analysis was done to recover their foci of origin and temporal dynamics. Results: In the two patients with hypothalamic hamartomas consistent ictal delta (2–3 Hz) rhythms were present, with subcortical generators in both and a superficial one in a single patient. The latter pattern was observed in the patient with no hypothalamic hamartoma visible in MRI. The deep generators activated earlier than the superficial ones, suggesting a consistent sub-cortical origin of the rhythmical activity. Conclusions: Our data is compatible with early and brief epileptic generators in deep sub-cortical regions and more superficial ones activating later. Significance: Gelastic seizures express rhythms on scalp EEG compatible with epileptic activity originating in sub-cortical generators and secondarily involving cortical ones.
Resumo:
Objective: The Panayiotopoulos type of idiopathic occipital epilepsy has peculiar and easily recognizable ictal symptoms, which are associated with complex and variable spike activity over the posterior scalp areas. These characteristics of spikes have prevented localization of the particular brain regions originating clinical manifestations. We studied spike activity in this epilepsy to determine their brain generators. Methods: The EEG of 5 patients (ages 7–9) was recorded, spikes were submitted to blind decomposition in independent components (ICs) and those to source analysis (sLORETA), revealing the spike generators. Coherence analysis evaluated the dynamics of the components. Results: Several ICs were recovered for posterior spikes in contrast to central spikes which originated a single one. Coherence analysis supports a model with epileptic activity originating near lateral occipital area and spreading to cortical temporal or parietal areas. Conclusions: Posterior spikes demonstrate rapid spread of epileptic activity to nearby lobes, starting in the lateral occipital area. In contrast, central spikes remain localized in the rolandic fissure. Significance: Rapid spread of posterior epileptic activity in the Panayitopoulos type of occipital lobe epilepsy is responsible for the variable and poorly localized spike EEG. The lateral occipital cortex is the primary generator of the epileptic activity.
Resumo:
Involuntary rhythmic leg movements in childhood is an uncommon condition, the generators of which remain unknown. We report on a male 3 years of age with distinct features providing important clues concerning the location of one of these generators. At the age of 7 months, the previously healthy young male started with low frequency, rhythmic, and continuous (both during wakefulness and sleep) flexion/extension movements of the lower limbs. Movements interfered significantly with gait acquisition, and, despite normal cognitive development, he was able to walk only at age 2 years, 4 months. The neurologic examination revealed the absence of automatic stepping in the neonatal period, but was otherwise normal. A polygraphic electroencephalogram/electromyogram EEG/EMG) recording, at the age of 2 years, 9 months, revealed rhythmic and synchronous legs with EMG activity at 0.5 Hz. A more complete polygraphic recording at the age of 3 years, 10 months, showed a lower frequency (0.35 Hz) for the movements, which were time-locked with the respiratory cycle. Magnetic resonance imaging (MRI) of the brain revealed an increased T2 signal in the upper medulla-lower pons regions. The generator of the rhythmic legs movements is postulated to be the respiratory center, connecting with the reticulospinal projecting neurons through an aberrant pathway.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Panayiotopoulos syndrome (PS) is a common epilepsy syndrome associated with rare clinical seizures and unknown localization of the epileptogenic area. Despite findings of normal development in patientswith PS, recent neuropsychological studies point to subtle and diverse cognitive impairments. No well-outlined hypothesis about the localization of the brain dysfunction responsible for these impairments has been proposed.We further explored the cognitive dysfunctions in PS andmade inferences on the most likely anatomical localization of brain impairment. A group of 19 patients (aged 6–12) with PS was rated according to spike activity and lateralization. The patients were submitted to a neuropsychological evaluation to assess general intelligence, memory, language, visual–perceptual abilities, attention, and executive functions. Using 35-channel scalp EEG recordings, the N170 face-evoked event-related potential (ERP)was obtained to assess the functional integrity of the ventral pathway. All patientswith PS showed normal IQ but subtle and consistent neurocognitive impairments. Namely, we found abnormalities in the copy task of the Rey–Osterrieth Complex Figure and in theNarrative Memory Test. There was no correlation between neuropsychological impairments with spike activity and hemispheric spike lateralization. The N170 ERP was normal in all patients except for one. Our neuropsychological findings demonstrate impairments in visual–perceptual abilities and in semantic processing. These findings, paired with the absence of occipital lobe dysfunction in all neuropsychological studies of PS performed to this date, support the existence of parietal lobe dysfunction.
Resumo:
Clinically childhood occipital lobe epilepsy (OLE) manifests itself with distinct syndromes. The traditional EEG recordings have not been able to overcome the difficulty in correlating the ictal clinical symptoms to the onset in particular areas of the occipital lobes. To understand these syndromes it is important to map with more precision the epileptogenic cortical regions in OLE. Experimentally, we studied three idiopathic childhood OLE patients with EEG source analysis and with the simultaneous acquisition of EEG and fMRI, to map the BOLD effect associated with EEG spikes. The spatial overlap between the EEG and BOLD results was not very good, but the fMRI suggested localizations more consistent with the ictal clinical manifestations of each type of epileptic syndrome. Since our first results show that by associating the BOLD effect with interictal spikes the epileptogenic areas are mapped to localizations different from those calculated from EEG sources and that by using different EEG/fMRI processing methods our results differ to some extent, it is very important to compare the different methods of processing the localization of activation and develop a good methodology for obtaining co-registration maps of high resolution EEG with BOLD localizations.