819 resultados para E-Learning Systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness. Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven- tions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary. Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems. To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Unified Modeling Language (UML) has quickly become the industry standard for object-oriented software development. It is being widely used in organizations and institutions around the world. However, UML is often found to be too complex for novice systems analysts. Although prior research has identified difficulties novice analysts encounter in learning UML, no viable solution has been proposed to address these difficulties. Sequence-diagram modeling, in particular, has largely been overlooked. The sequence diagram models the behavioral aspects of an object-oriented software system in terms of interactions among its building blocks, i.e. objects and classes. It is one of the most commonly-used UML diagrams in practice. However, there has been little research on sequence-diagram modeling. The current literature scarcely provides effective guidelines for developing a sequence diagram. Such guidelines will be greatly beneficial to novice analysts who, unlike experienced systems analysts, do not possess relevant prior experience to easily learn how to develop a sequence diagram. There is the need for an effective sequence-diagram modeling technique for novices. This dissertation reports a research study that identified novice difficulties in modeling a sequence diagram and proposed a technique called CHOP (CHunking, Ordering, Patterning), which was designed to reduce the cognitive load by addressing the cognitive complexity of sequence-diagram modeling. The CHOP technique was evaluated in a controlled experiment against a technique recommended in a well-known textbook, which was found to be representative of approaches provided in many textbooks as well as practitioner literatures. The results indicated that novice analysts were able to perform better using the CHOP technique. This outcome seems have been enabled by pattern-based heuristics provided by the technique. Meanwhile, novice analysts rated the CHOP technique more useful although not significantly easier to use than the control technique. The study established that the CHOP technique is an effective sequence-diagram modeling technique for novice analysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Patients with lung and esophageal cancer often have surgery as a means of treatment. In Newfoundland and Labrador, patients with lung and esophageal issues are cared for on Six East, the General/Thoracic Surgery unit at St. Clare’s Mercy Hospital. These patients frequently require chest tubes, which are managed and assessed by Registered Nurses (RNs) on the unit. For nurses new to thoracic surgery, fulfilling their new role and caring for chest tube systems can be daunting. Purpose: The purpose of this practicum project was to develop a learning resource manual for nurses who are new to thoracic surgery. Via self-directed learning, the manual can increase the knowledge and self-efficacy of nurses who are caring for thoracic surgery clients and assessing chest tube systems. Methods: An informal needs assessment, integrated literature review, and several consultations via in-person interviews were conducted. Results: Based on the findings from these methodologies, Knowles’ Adult Learning Theory, and Benner’s Novice to Expert Model, a learning resource manual was created. The manual was divided into chapters covering various aspects of patient and chest tube system care and assessment. Conclusion: For the purpose of this practicum project, no evaluation was conducted. However, a plan for future evaluation of the learning resource manual has been developed to determine if the manual assisted with increasing the knowledge and self-efficacy of nurses new to thoracic surgery. “Test Your Knowledge” questions were included at the end of each chapter in the manual as well as case study scenarios to allow for participant self-evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Right across Europe technology is playing a vital part in enhancing learning for an increasingly diverse population of learners. Learning is increasingly flexible, social and mobile and supported by high quality multi-media resources. Institutional VLEs are seeing a shift towards open source products and these core systems are supplemented by a range of social and collaborative learning tools based on web 2.0 technologies. Learners undertaking field studies and those in the workplace are coming to expect that these off-campus experiences will also be technology-rich whether supported by institutional or user-owned devices. As well as keeping European businesses competitive, learning is seen as a means of increasing social mobility and supporting an agenda of social justice. For a number of years the EUNIS E-Learning Task Force (ELTF) has conducted snapshot surveys of e-learning across member institutions, collected case studies of good practice in e-learning see (Hayes, et al., 2009) in references, supported a group looking at the future of e-learning, and showcased the best of innovation in its e-learning Award. Now for the first time the ELTF membership has come together to undertake an analysis of developments in the member states and to assess what this might mean for the future. The group applied the techniques of World Café conversation and Scenario Thinking to develop its thoughts. The analysis is unashamedly qualitative and draws on expertise from leading universities across eight of the EUNIS member states. What emerges is interesting in terms of the common trends in developments in all of the nations and similarities in hopes and concerns about the future development of learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subspaces and manifolds are two powerful models for high dimensional signals. Subspaces model linear correlation and are a good fit to signals generated by physical systems, such as frontal images of human faces and multiple sources impinging at an antenna array. Manifolds model sources that are not linearly correlated, but where signals are determined by a small number of parameters. Examples are images of human faces under different poses or expressions, and handwritten digits with varying styles. However, there will always be some degree of model mismatch between the subspace or manifold model and the true statistics of the source. This dissertation exploits subspace and manifold models as prior information in various signal processing and machine learning tasks.

A near-low-rank Gaussian mixture model measures proximity to a union of linear or affine subspaces. This simple model can effectively capture the signal distribution when each class is near a subspace. This dissertation studies how the pairwise geometry between these subspaces affects classification performance. When model mismatch is vanishingly small, the probability of misclassification is determined by the product of the sines of the principal angles between subspaces. When the model mismatch is more significant, the probability of misclassification is determined by the sum of the squares of the sines of the principal angles. Reliability of classification is derived in terms of the distribution of signal energy across principal vectors. Larger principal angles lead to smaller classification error, motivating a linear transform that optimizes principal angles. This linear transformation, termed TRAIT, also preserves some specific features in each class, being complementary to a recently developed Low Rank Transform (LRT). Moreover, when the model mismatch is more significant, TRAIT shows superior performance compared to LRT.

The manifold model enforces a constraint on the freedom of data variation. Learning features that are robust to data variation is very important, especially when the size of the training set is small. A learning machine with large numbers of parameters, e.g., deep neural network, can well describe a very complicated data distribution. However, it is also more likely to be sensitive to small perturbations of the data, and to suffer from suffer from degraded performance when generalizing to unseen (test) data.

From the perspective of complexity of function classes, such a learning machine has a huge capacity (complexity), which tends to overfit. The manifold model provides us with a way of regularizing the learning machine, so as to reduce the generalization error, therefore mitigate overfiting. Two different overfiting-preventing approaches are proposed, one from the perspective of data variation, the other from capacity/complexity control. In the first approach, the learning machine is encouraged to make decisions that vary smoothly for data points in local neighborhoods on the manifold. In the second approach, a graph adjacency matrix is derived for the manifold, and the learned features are encouraged to be aligned with the principal components of this adjacency matrix. Experimental results on benchmark datasets are demonstrated, showing an obvious advantage of the proposed approaches when the training set is small.

Stochastic optimization makes it possible to track a slowly varying subspace underlying streaming data. By approximating local neighborhoods using affine subspaces, a slowly varying manifold can be efficiently tracked as well, even with corrupted and noisy data. The more the local neighborhoods, the better the approximation, but the higher the computational complexity. A multiscale approximation scheme is proposed, where the local approximating subspaces are organized in a tree structure. Splitting and merging of the tree nodes then allows efficient control of the number of neighbourhoods. Deviation (of each datum) from the learned model is estimated, yielding a series of statistics for anomaly detection. This framework extends the classical {\em changepoint detection} technique, which only works for one dimensional signals. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.

The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.

Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.

Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.

The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Computing frameworks belong to a class of programming models that allow developers to

launch workloads on large clusters of machines. Due to the dramatic increase in the volume of

data gathered by ubiquitous computing devices, data analytic workloads have become a common

case among distributed computing applications, making Data Science an entire field of

Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,

a sequence of operations they wish to apply on this dataset, and some constraint they may have

related to their work (performances, QoS, budget, etc). However, it is actually extremely

difficult, without domain expertise, to perform data science. One need to select the right amount

and type of resources, pick up a framework, and configure it. Also, users are often running their

application in shared environments, ruled by schedulers expecting them to specify precisely their resource

needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and

profiling are hard, high dimensional problems that block users from making the right

configuration choices and determining the right amount of resources they need. Paradoxically, the

system is gathering a large amount of monitoring data at runtime, which remains unused.

In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit

monitoring data to learn about workloads, and process user requests into a tailored execution

context. In this work, we study different techniques that have been used to make steps toward

such system awareness, and explore a new way to do so by implementing machine learning

techniques to recommend a specific subset of system configurations for Apache Spark applications.

Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight

the complexity in choosing the best one for a given workload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selected publications are focused on the relations between users, eGames and the educational context, and how they interact together, so that both learning and user performance are improved through feedback provision. A key part of this analysis is the identification of behavioural, anthropological patterns, so that users can be clustered based on their actions, and the steps taken in the system (e.g. social network, online community, or virtual campus). In doing so, we can analyse large data sets of information made by a broad user sample,which will provide more accurate statistical reports and readings. Furthermore, this research is focused on how users can be clustered based on individual and group behaviour, so that a personalized support through feedback is provided, and the personal learning process is improved as well as the group interaction. We take inputs from every person and from the group they belong to, cluster the contributions, find behavioural patterns and provide personalized feedback to the individual and the group, based on personal and group findings. And we do all this in the context of educational games integrated in learning communities and learning management systems. To carry out this research we design a set of research questions along the 10-year published work presented in this thesis. We ask if the users can be clustered together based on the inputs provided by them and their groups; if and how these data are useful to improve the learner performance and the group interaction; if and how feedback becomes a useful tool for such pedagogical goal; if and how eGames become a powerful context to deploy the pedagogical methodology and the various research methods and activities that make use of that feedback to encourage learning and interaction; if and how a game design and a learning design must be defined and implemented to achieve these objectives, and to facilitate the productive authoring and integration of eGames in pedagogical contexts and frameworks. We conclude that educational games are a resourceful tool to provide a user experience towards a better personalized learning performance and an enhance group interaction along the way. To do so, eGames, while integrated in an educational context, must follow a specific set of user and technical requirements, so that the playful context supports the pedagogical model underneath. We also conclude that, while playing, users can be clustered based on their personal behaviour and interaction with others, thanks to the pattern identification. Based on this information, a set of recommendations are provided Digital Anthropology and educational eGames 6 /216 to the user and the group in the form of personalized feedback, timely managed for an optimum impact on learning performance and group interaction level. In this research, Digital Anthropology is introduced as a concept at a late stage to provide a backbone across various academic fields including: Social Science, Cognitive Science, Behavioural Science, Educational games and, of course, Technology-enhance learning. Although just recently described as an evolution of traditional anthropology, this approach to digital behaviour and social structure facilitates the understanding amongst fields and a comprehensive view towards a combined approach. This research takes forward the already existing work and published research onusers and eGames for learning, and turns the focus onto the next step — the clustering of users based on their behaviour and offering proper, personalized feedback to the user based on that clustering, rather than just on isolated inputs from every user. Indeed, this pattern recognition in the described context of eGames in educational contexts, and towards the presented aim of personalized counselling to the user and the group through feedback, is something that has not been accomplished before.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences and societal changes require innovation of existing practices. This paper proposes a framework with relevant dimensions providing insight into precipitated characteristics of designed as well as ‘fostered or grown’ networked learning initiatives. Networked learning initiatives are characterized as “goal-directed, interest-, or needs based activities of a group of (at least three) individuals that initiate interaction across the boundaries of their regular social systems”. The proposed framework is based on two existing research traditions, namely 'networked learning' and 'learning networks', comparing, integrating and building upon knowledge from both perspectives. We uncover some interesting differences between definitions, but also similarities in the way they describe what ‘networked’ means and how learning is conceptualized. We think it is productive to combine both research perspectives, since they both study the process of learning in networks extensively, albeit from different points of view, and their combination can provide valuable insights in networked learning initiatives. We uncover important features of networked learning initiatives, characterize actors and connections of which they are comprised and conditions which facilitate and support them. The resulting framework could be used both for analytic purposes and (partly) as a design framework. In this framework it is acknowledged that not all successful networks have the same characteristics: there is no standard ‘constellation’ of people, roles, rules, tools and artefacts, although there are indications that some network structures work better than others. Interactions of individuals can only be designed and fostered till a certain degree: the type of network and its ‘growth’ (e.g. in terms of the quantity of people involved, or the quality and relevance of co-created concepts, ideas, artefacts and solutions to its ‘inhabitants’) is in the hand of the people involved. Therefore, the framework consists of dimensions on a sliding scale. It introduces a structured and analytic way to look at the precipitation of networked learning initiatives: learning networks. Successive research on the application of this framework and feedback from the networked learning community is needed to further validate it’s usability and value to both research as well as practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

People recommenders are a widespread feature of social networking sites and educational social learning platforms alike. However, when these systems are used to extend learners’ Personal Learning Networks, they often fall short of providing recommendations of learning value to their users. This paper proposes a design of a people recommender based on content-based user profiles, and a matching method based on dissimilarity therein. It presents the results of an experiment conducted with curators of the content curation site Scoop.it!, where curators rated personalized recommendations for contacts. The study showed that matching dissimilarity of interpretations of shared interests is more successful in providing positive experiences of breakdown for the curator than is matching on similarity. The main conclusion of this paper is that people recommenders should aim to trigger constructive experiences of breakdown for their users, as the prospect and potential of such experiences encourage learners to connect to their recommended peers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences and societal changes require innovation of existing practices. This paper proposes a framework with relevant dimensions providing insight into precipitated characteristics of designed as well as ‘fostered or grown’ networked learning initiatives. Networked learning initiatives are characterized as “goal-directed, interest-, or needs based activities of a group of (at least three) individuals that initiate interaction across the boundaries of their regular social systems”. The proposed framework is based on two existing research traditions, namely 'networked learning' and 'learning networks', comparing, integrating and building upon knowledge from both perspectives. We uncover some interesting differences between definitions, but also similarities in the way they describe what ‘networked’ means and how learning is conceptualized. We think it is productive to combine both research perspectives, since they both study the process of learning in networks extensively, albeit from different points of view, and their combination can provide valuable insights in networked learning initiatives. We uncover important features of networked learning initiatives, characterize actors and connections of which they are comprised and conditions which facilitate and support them. The resulting framework could be used both for analytic purposes and (partly) as a design framework. In this framework it is acknowledged that not all successful networks have the same characteristics: there is no standard ‘constellation’ of people, roles, rules, tools and artefacts, although there are indications that some network structures work better than others. Interactions of individuals can only be designed and fostered till a certain degree: the type of network and its ‘growth’ (e.g. in terms of the quantity of people involved, or the quality and relevance of co-created concepts, ideas, artefacts and solutions to its ‘inhabitants’) is in the hand of the people involved. Therefore, the framework consists of dimensions on a sliding scale. It introduces a structured and analytic way to look at the precipitation of networked learning initiatives: learning networks. Successive research on the application of this framework and feedback from the networked learning community is needed to further validate it’s usability and value to both research as well as practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intelligent Tutoring Systems (ITSs) are computerized systems for learning-by-doing. These systems provide students with immediate and customized feedback on learning tasks. An ITS typically consists of several modules that are connected to each other. This research focuses on the distribution of the ITS module that provides expert knowledge services. For the distribution of such an expert knowledge module we need to use an architectural style because this gives a standard interface, which increases the reusability and operability of the expert knowledge module. To provide expert knowledge modules in a distributed way we need to answer the research question: ‘How can we compare and evaluate REST, Web services and Plug-in architectural styles for the distribution of the expert knowledge module in an intelligent tutoring system?’. We present an assessment method for selecting an architectural style. Using the assessment method on three architectural styles, we selected the REST architectural style as the style that best supports the distribution of expert knowledge modules. With this assessment method we also analyzed the trade-offs that come with selecting REST. We present a prototype and architectural views based on REST to demonstrate that the assessment method correctly scores REST as an appropriate architectural style for the distribution of expert knowledge modules.