967 resultados para Distribution Functions
Resumo:
Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.
Resumo:
Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.
Resumo:
Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.
Resumo:
Utility functions in Bayesian experimental design are usually based on the posterior distribution. When the posterior is found by simulation, it must be sampled from for each future data set drawn from the prior predictive distribution. Many thousands of posterior distributions are often required. A popular technique in the Bayesian experimental design literature to rapidly obtain samples from the posterior is importance sampling, using the prior as the importance distribution. However, importance sampling will tend to break down if there is a reasonable number of experimental observations and/or the model parameter is high dimensional. In this paper we explore the use of Laplace approximations in the design setting to overcome this drawback. Furthermore, we consider using the Laplace approximation to form the importance distribution to obtain a more efficient importance distribution than the prior. The methodology is motivated by a pharmacokinetic study which investigates the effect of extracorporeal membrane oxygenation on the pharmacokinetics of antibiotics in sheep. The design problem is to find 10 near optimal plasma sampling times which produce precise estimates of pharmacokinetic model parameters/measures of interest. We consider several different utility functions of interest in these studies, which involve the posterior distribution of parameter functions.
Resumo:
The prime objective of drying is to enhance shelf life of perishable food materials. As the process is very energy intensive in nature, researchers are trying to minimise energy consumption in the drying process. In order to determine the exact amount of energy needed for drying a food product, understanding the physics of moisture distribution and bond strength of water within the food material is essential. In order understand the critical moisture content, moisture distribution and water bond strength in food material, Thermogravimetric analysis (TGA) can be properly utilised. This work has been conducted to investigate moisture distribution and water bond strength in selected food materials; apple, banana and potato. It was found that moisture distribution and water bond strength influence moisture migration from the food materials. In addition, proportion of different types of water (bound, free, surface water) has been simply identified using TGA. This study provides a better understanding of water contents and its role in drying rate and energy consumption.
Resumo:
Gemcitabine is indicated in combination with cisplatin as first-line therapy for solid tumours including non-small cell lung cancer (NSCLC), bladder cancer and mesothelioma. Gemcitabine is an analogue of pyrimidine cytosine and functions as an anti-metabolite. Structurally, however, gemcitabine has similarities to 5-aza-2-deoxycytidine (decitabine/Dacogen®), a DNA methyltransferase inhibitor (DNMTi). NSCLC, mesothelioma and prostate cancer cell lines were treated with decitabine and gemcitabine. Reactivation of epigenetically silenced genes was examined by RT-PCR/qPCR. DNA methyltransferase activity in nuclear extracts and recombinant proteins was measured using a DNA methyltransferase assay, and alterations in DNA methylation status were examined using methylation-specific PCR (MS-PCR) and pyrosequencing. We observe a reactivation of several epigenetically silenced genes including GSTP1, IGFBP3 and RASSF1A. Gemcitabine functionally inhibited DNA methyltransferase activity in both nuclear extracts and recombinant proteins. Gemcitabine dramatically destabilised DNMT1 protein. However, DNA CpG methylation was for the most part unaffected by gemcitabine. In conclusion, gemcitabine both inhibits and destabilises DNA methyltransferases and reactivates epigenetically silenced genes having activity equivalent to decitabine at concentrations significantly lower than those achieved in the treatment of patients with solid tumours. This property may contribute to the anticancer activity of gemcitabine.
Resumo:
This thesis documented pathogenic species of nontuberculous mycobacteria in the Brisbane water distribution system. When water and shower aerosol strains were compared with human strains of mycobacteria, the study found that the likelihood of acquiring infection from municipal water was specific for four main species. The method for isolation of mycobacteria from water was refined, followed by sampling from 220 sites across Brisbane. A variety of species (incl 15 pathogens) were identified and genotypically compared to human strains. For M. abscessus and M. lentiflavum, water strains clustered with human strains. Pathogenic strains of M. kansasii were found, though non-pathogenic strains dominated. Waterborne strains of M. fortuitum differed to human strains. Extensive home sampling of 20 patients with NTM disease, supported the theory that the risk of acquiring NTM from water or shower aerosols appears species specific for M. avium, M. kansasii, M. lentiflavum and M. abscessus.
Resumo:
Abstract BACKGROUND: An examination of melanoma incidence according to anatomical region may be one method of monitoring the impact of public health initiatives. OBJECTIVES: To examine melanoma incidence trends by body site, sex and age at diagnosis or body site and morphology in a population at high risk. MATERIALS AND METHODS: Population-based data on invasive melanoma cases (n = 51473) diagnosed between 1982 and 2008 were extracted from the Queensland Cancer Registry. Age-standardized incidence rates were calculated using the direct method (2000 world standard population) and joinpoint regression models were used to fit trend lines. RESULTS: Significantly decreasing trends for melanomas on the trunk and upper limbs/shoulders were observed during recent years for both sexes under the age of 40 years and among males aged 40-59years. However, in the 60 and over age group, the incidence of melanoma is continuing to increase at all sites (apart from the trunk) for males and on the scalp/neck and upper limbs/shoulders for females. Rates of nodular melanoma are currently decreasing on the trunk and lower limbs. In contrast, superficial spreading melanoma is significantly increasing on the scalp/neck and lower limbs, along with substantial increases in lentigo maligna melanoma since the late 1990s at all sites apart from the lower limbs. CONCLUSIONS: In this large study we have observed significant decreases in rates of invasive melanoma in the younger age groups on less frequently exposed body sites. These results may provide some indirect evidence of the impact of long-running primary prevention campaigns.
Resumo:
Price based technique is one way to handle increase in peak demand and deal with voltage violations in residential distribution systems. This paper proposes an improved real time pricing scheme for residential customers with demand response option. Smart meters and in-home display units are used to broadcast the price and appropriate load adjustment signals. Customers are given an opportunity to respond to the signals and adjust the loads. This scheme helps distribution companies to deal with overloading problems and voltage issues in a more efficient way. Also, variations in wholesale electricity prices are passed on to electricity customers to take collective measure to reduce network peak demand. It is ensured that both customers and utility are benefitted by this scheme.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
Integration of small-scale electricity generators, known as Distributed Generation (DG), into the distribution networks has become increasingly popular at the present. This tendency together with the falling price of synchronous-type generator has potential to give the DG a better chance in participating in the voltage regulation process together with other devices already available in the system. The voltage control issue turns out to be a very challenging problem for the distribution engineers since existing control coordination schemes would need to be reconsidered to take into account the DG operation. In this paper, we propose a control coordination technique, which is able to utilize the ability of the DG as a voltage regulator, and at the same time minimizes interaction with other active devices, such as On-load Tap Changing Transformer (OLTC) and voltage regulator. The technique has been developed based on the concept of control zone, Line Drop Compensation (LDC), as well as the choice of controller's parameters. Simulations carried out on an Australian system show that the technique is suitable and flexible for any system with multiple regulating devices including DG.
Resumo:
The reliable operation of distribution systems is critically dependent on detailed understanding of load impacts on distribution transformer insulation systems. This paper estimates the impact of rooftop photovoltaic (PV) generation on a typical 200-kVA, 22/0.415-kV distribution transformer life under different operating conditions. This transformer supplies a suburban area with a high penetration of roof top photovoltaic systems. The transformer loads and the phase distribution of the PV systems are significantly unbalanced. Oil and hot-spot temperature and remnant life of distribution transformer under different PV and balance scenarios are calculated. It is shown that PV can significantly extend the transformer life.
Resumo:
Plug-in electric vehicles will soon be connected to residential distribution networks in high quantities and will add to already overburdened residential feeders. However, as battery technology improves, plug-in electric vehicles will also be able to support networks as small distributed generation units by transferring the energy stored in their battery into the grid. Even though the increase in the plug-in electric vehicle connection is gradual, their connection points and charging/discharging levels are random. Therefore, such single-phase bidirectional power flows can have an adverse effect on the voltage unbalance of a three-phase distribution network. In this article, a voltage unbalance sensitivity analysis based on charging/discharging levels and the connection point of plug-in electric vehicles in a residential low-voltage distribution network is presented. Due to the many uncertainties in plug-in electric vehicle ratings and connection points and the network load, a Monte Carlo-based stochastic analysis is developed to predict voltage unbalance in the network in the presence of plug-in electric vehicles. A failure index is introduced to demonstrate the probability of non-standard voltage unbalance in the network due to plug-in electric vehicles.
Resumo:
Monitoring stream networks through time provides important ecological information. The sampling design problem is to choose locations where measurements are taken so as to maximise information gathered about physicochemical and biological variables on the stream network. This paper uses a pseudo-Bayesian approach, averaging a utility function over a prior distribution, in finding a design which maximizes the average utility. We use models for correlations of observations on the stream network that are based on stream network distances and described by moving average error models. Utility functions used reflect the needs of the experimenter, such as prediction of location values or estimation of parameters. We propose an algorithmic approach to design with the mean utility of a design estimated using Monte Carlo techniques and an exchange algorithm to search for optimal sampling designs. In particular we focus on the problem of finding an optimal design from a set of fixed designs and finding an optimal subset of a given set of sampling locations. As there are many different variables to measure, such as chemical, physical and biological measurements at each location, designs are derived from models based on different types of response variables: continuous, counts and proportions. We apply the methodology to a synthetic example and the Lake Eacham stream network on the Atherton Tablelands in Queensland, Australia. We show that the optimal designs depend very much on the choice of utility function, varying from space filling to clustered designs and mixtures of these, but given the utility function, designs are relatively robust to the type of response variable.
Resumo:
This is an invited public lecture. The talk will cover how the music industry has changed due to digital technologies. During the talk I will look at how the changing balance between live music, music licensing and recorded music. I will also discuss online music subscription services and whether they might be a future for music distribution in China and elsewhere in the world. It will also look at how music artists and composers are affected by this change.