964 resultados para Distributed algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a parallel genetic algorithm for compressing scanned document images. A fitness function is designed with Hausdorff distance which determines the terminating condition. The algorithm helps to locate the text lines. A greater compression ratio has achieved with lesser distortion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcement Learning (RL) refers to a class of learning algorithms in which learning system learns which action to take in different situations by using a scalar evaluation received from the environment on performing an action. RL has been successfully applied to many multi stage decision making problem (MDP) where in each stage the learning systems decides which action has to be taken. Economic Dispatch (ED) problem is an important scheduling problem in power systems, which decides the amount of generation to be allocated to each generating unit so that the total cost of generation is minimized without violating system constraints. In this paper we formulate economic dispatch problem as a multi stage decision making problem. In this paper, we also develop RL based algorithm to solve the ED problem. The performance of our algorithm is compared with other recent methods. The main advantage of our method is it can learn the schedule for all possible demands simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Multi-Objective Antenna Placement Genetic Algorithm (MO-APGA) has been proposed for the synthesis of matched antenna arrays on complex platforms. The total number of antennas required, their position on the platform, location of loads, loading circuit parameters, decoupling and matching network topology, matching network parameters and feed network parameters are optimized simultaneously. The optimization goal was to provide a given minimum gain, specific gain discrimination between the main and back lobes and broadband performance. This algorithm is developed based on the non-dominated sorting genetic algorithm (NSGA-II) and Minimum Spanning Tree (MST) technique for producing diverse solutions when the number of objectives is increased beyond two. The proposed method is validated through the design of a wideband airborne SAR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable research effort has been devoted in predicting the exon regions of genes. The binary indicator (BI), Electron ion interaction pseudo potential (EIIP), Filter method are some of the methods. All these methods make use of the period three behavior of the exon region. Even though the method suggested in this paper is similar to above mentioned methods , it introduces a set of sequences for mapping the nucleotides selected by applying genetic algorithm and found to be more promising

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combinational digital circuits can be evolved automatically using Genetic Algorithms (GA). Until recently this technique used linear chromosomes and and one dimensional crossover and mutation operators. In this paper, a new method for representing combinational digital circuits as 2 Dimensional (2D) chromosomes and suitable 2D crossover and mutation techniques has been proposed. By using this method, the convergence speed of GA can be increased significantly compared to the conventional methods. Moreover, the 2D representation and crossover operation provides the designer with better visualization of the evolved circuits. In addition to this, a technique to display automatically the evolved circuits has been developed with the help of MATLAB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach to the design of combinational digital circuits with multiplexers using Evolutionary techniques. Genetic Algorithm (GA) is used as the optimization tool. Several circuits are synthesized with this method and compared with two design techniques such as standard implementation of logic functions using multiplexers and implementation using Shannon’s decomposition technique using GA. With the proposed method complexity of the circuit and the associated delay can be reduced significantly

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Das Grünbuch 2006 der Europäischen Kommission "Eine Europäische Strategie für nachhaltige, wettbewerbsfähige und sichere Energie" unterstreicht, dass Europa in ein neues Energie-Zeitalter eingetreten ist. Die vorrangigen Ziele europäischer Energiepolitik müssen Nachhaltigkeit, Wettbewerbsfähigkeit und Versorgungssicherheit sein, wobei sie eine zusammenhängende und logische Menge von Taktiken und Maßnahmen benötigt, um diese Ziele zu erreichen. Die Strommärkte und Verbundnetze Europas bilden das Kernstück unseres Energiesystems und müssen sich weiterentwickeln, um den neuen Anforderungen zu entsprechen. Die europäischen Stromnetze haben die lebenswichtigen Verbindungen zwischen Stromproduzenten und Verbrauchern mit großem Erfolg seit vielen Jahrzehnten gesichert. Die grundlegende Struktur dieser Netze ist entwickelt worden, um die Bedürfnisse großer, überwiegend auf Kohle aufgebauten Herstellungstechnologien zu befriedigen, die sich entfernt von den Verbraucherzentren befinden. Die Energieprobleme, denen Europa jetzt gegenübersteht, ändern die Stromerzeugungslandschaft in zwei Gesichtspunkten: die Notwendigkeit für saubere Kraftwerkstechnologien verbunden mit erheblich verbesserten Wirkungsgraden auf der Verbraucherseite wird es Kunden ermöglichen, mit den Netzen viel interaktiver zu arbeiten; andererseits müssen die zukünftigen europaweiten Stromnetze allen Verbrauchern eine höchst zuverlässige, preiswerte Energiezufuhr bereitstellen, wobei sowohl die Nutzung von großen zentralisierten Kraftwerken als auch kleineren lokalen Energiequellen überall in Europa ausgeschöpft werden müssen. In diesem Zusammenhang wird darauf hingewiesen, dass die Informationen, die in dieser Arbeit dargestellt werden, auf aktuellen Fragen mit großem Einfluss auf die gegenwärtigen technischen und wirtschaftspolitischen Diskussionen basieren. Der Autor hat während der letzten Jahre viele der hier vorgestellten Schlussfolgerungen und Empfehlungen mit Vertretern der Kraftwerksindustrie, Betreibern von Stromnetzen und Versorgungsbetrieben, Forschungsgremien und den Regulierungsstellen diskutiert. Die folgenden Absätze fassen die Hauptergebnisse zusammen: Diese Arbeit definiert das neue Konzept, das auf mehr verbraucherorientierten Netzen basiert, und untersucht die Notwendigkeiten sowie die Vorteile und die Hindernisse für den Übergang auf ein mögliches neues Modell für Europa: die intelligenten Stromnetze basierend auf starker Integration erneuerbarer Quellen und lokalen Kleinkraftwerken. Das neue Modell wird als eine grundlegende Änderung dargestellt, die sich deutlich auf Netzentwurf und -steuerung auswirken wird. Sie fordert ein europäisches Stromnetz mit den folgenden Merkmalen: – Flexibel: es erfüllt die Bedürfnisse der Kunden, indem es auf Änderungen und neue Forderungen eingehen kann – Zugänglich: es gestattet den Verbindungszugang aller Netzbenutzer besonders für erneuerbare Energiequellen und lokale Stromerzeugung mit hohem Wirkungsgrad sowie ohne oder mit niedrigen Kohlendioxidemissionen – Zuverlässig: es verbessert und garantiert die Sicherheit und Qualität der Versorgung mit den Forderungen des digitalen Zeitalters mit Reaktionsmöglichkeiten gegen Gefahren und Unsicherheiten – Wirtschaftlich: es garantiert höchste Wirtschaftlichkeit durch Innovation, effizientes Energiemanagement und liefert „gleiche Ausgangsbedingungen“ für Wettbewerb und Regulierung. Es beinhaltet die neuesten Technologien, um Erfolg zu gewährleisten, während es die Flexibilität behält, sich an weitere Entwicklungen anzupassen und fordert daher ein zuversichtliches Programm für Forschung, Entwicklung und Demonstration, das einen Kurs im Hinblick auf ein Stromversorgungsnetz entwirft, welches die Bedürfnisse der Zukunft Europas befriedigt: – Netztechnologien, die die Stromübertragung verbessern und Energieverluste verringern, werden die Effizienz der Versorgung erhöhen, während neue Leistungselektronik die Versorgungsqualität verbessern wird. Es wird ein Werkzeugkasten erprobter technischer Lösungen geschaffen werden, der schnell und wirtschaftlich eingesetzt werden kann, so dass bestehende Netze Stromeinleitungen von allen Energieressourcen aufnehmen können. – Fortschritte bei Simulationsprogrammen wird die Einführung innovativer Technologien in die praktische Anwendung zum Vorteil sowohl der Kunden als auch der Versorger stark unterstützen. Sie werden das erfolgreiche Anpassen neuer und alter Ausführungen der Netzkomponenten gewährleisten, um die Funktion von Automatisierungs- und Regelungsanordnungen zu garantieren. – Harmonisierung der ordnungspolitischen und kommerziellen Rahmen in Europa, um grenzüberschreitenden Handel von sowohl Energie als auch Netzdienstleistungen zu erleichtern; damit muss eine Vielzahl von Einsatzsituationen gewährleistet werden. Gemeinsame technische Normen und Protokolle müssen eingeführt werden, um offenen Zugang zu gewährleisten und den Einsatz der Ausrüstung eines jeden Herstellers zu ermöglichen. – Entwicklungen in Nachrichtentechnik, Mess- und Handelssystemen werden auf allen Ebenen neue Möglichkeiten eröffnen, auf Grund von Signalen des Marktes frühzeitig technische und kommerzielle Wirkungsgrade zu verbessern. Es wird Unternehmen ermöglichen, innovative Dienstvereinbarungen zu benutzen, um ihre Effizienz zu verbessern und ihre Angebote an Kunden zu vergrößern. Schließlich muss betont werden, dass für einen erfolgreichen Übergang zu einem zukünftigen nachhaltigen Energiesystem alle relevanten Beteiligten involviert werden müssen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With this document, we provide a compilation of in-depth discussions on some of the most current security issues in distributed systems. The six contributions have been collected and presented at the 1st Kassel Student Workshop on Security in Distributed Systems (KaSWoSDS’08). We are pleased to present a collection of papers not only shedding light on the theoretical aspects of their topics, but also being accompanied with elaborate practical examples. In Chapter 1, Stephan Opfer discusses Viruses, one of the oldest threats to system security. For years there has been an arms race between virus producers and anti-virus software providers, with no end in sight. Stefan Triller demonstrates how malicious code can be injected in a target process using a buffer overflow in Chapter 2. Websites usually store their data and user information in data bases. Like buffer overflows, the possibilities of performing SQL injection attacks targeting such data bases are left open by unwary programmers. Stephan Scheuermann gives us a deeper insight into the mechanisms behind such attacks in Chapter 3. Cross-site scripting (XSS) is a method to insert malicious code into websites viewed by other users. Michael Blumenstein explains this issue in Chapter 4. Code can be injected in other websites via XSS attacks in order to spy out data of internet users, spoofing subsumes all methods that directly involve taking on a false identity. In Chapter 5, Till Amma shows us different ways how this can be done and how it is prevented. Last but not least, cryptographic methods are used to encode confidential data in a way that even if it got in the wrong hands, the culprits cannot decode it. Over the centuries, many different ciphers have been developed, applied, and finally broken. Ilhan Glogic sketches this history in Chapter 6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic Programming can be effectively used to create emergent behavior for a group of autonomous agents. In the process we call Offline Emergence Engineering, the behavior is at first bred in a Genetic Programming environment and then deployed to the agents in the real environment. In this article we shortly describe our approach, introduce an extended behavioral rule syntax, and discuss the impact of the expressiveness of the behavioral description to the generation success, using two scenarios in comparison: the election problem and the distributed critical section problem. We evaluate the results, formulating criteria for the applicability of our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web services from different partners can be combined to applications that realize a more complex business goal. Such applications built as Web service compositions define how interactions between Web services take place in order to implement the business logic. Web service compositions not only have to provide the desired functionality but also have to comply with certain Quality of Service (QoS) levels. Maximizing the users' satisfaction, also reflected as Quality of Experience (QoE), is a primary goal to be achieved in a Service-Oriented Architecture (SOA). Unfortunately, in a dynamic environment like SOA unforeseen situations might appear like services not being available or not responding in the desired time frame. In such situations, appropriate actions need to be triggered in order to avoid the violation of QoS and QoE constraints. In this thesis, proper solutions are developed to manage Web services and Web service compositions with regard to QoS and QoE requirements. The Business Process Rules Language (BPRules) was developed to manage Web service compositions when undesired QoS or QoE values are detected. BPRules provides a rich set of management actions that may be triggered for controlling the service composition and for improving its quality behavior. Regarding the quality properties, BPRules allows to distinguish between the QoS values as they are promised by the service providers, QoE values that were assigned by end-users, the monitored QoS as measured by our BPR framework, and the predicted QoS and QoE values. BPRules facilitates the specification of certain user groups characterized by different context properties and allows triggering a personalized, context-aware service selection tailored for the specified user groups. In a service market where a multitude of services with the same functionality and different quality values are available, the right services need to be selected for realizing the service composition. We developed new and efficient heuristic algorithms that are applied to choose high quality services for the composition. BPRules offers the possibility to integrate multiple service selection algorithms. The selection algorithms are applicable also for non-linear objective functions and constraints. The BPR framework includes new approaches for context-aware service selection and quality property predictions. We consider the location information of users and services as context dimension for the prediction of response time and throughput. The BPR framework combines all new features and contributions to a comprehensive management solution. Furthermore, it facilitates flexible monitoring of QoS properties without having to modify the description of the service composition. We show how the different modules of the BPR framework work together in order to execute the management rules. We evaluate how our selection algorithms outperform a genetic algorithm from related research. The evaluation reveals how context data can be used for a personalized prediction of response time and throughput.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A foundational model of concurrency is developed in this thesis. We examine issues in the design of parallel systems and show why the actor model is suitable for exploiting large-scale parallelism. Concurrency in actors is constrained only by the availability of hardware resources and by the logical dependence inherent in the computation. Unlike dataflow and functional programming, however, actors are dynamically reconfigurable and can model shared resources with changing local state. Concurrency is spawned in actors using asynchronous message-passing, pipelining, and the dynamic creation of actors. This thesis deals with some central issues in distributed computing. Specifically, problems of divergence and deadlock are addressed. For example, actors permit dynamic deadlock detection and removal. The problem of divergence is contained because independent transactions can execute concurrently and potentially infinite processes are nevertheless available for interaction.