918 resultados para Disease Models
Resumo:
The article considers screening human populations with two screening tests. If any of the two tests is positive, then full evaluation of the disease status is undertaken; however, if both diagnostic tests are negative, then disease status remains unknown. This procedure leads to a data constellation in which, for each disease status, the 2 × 2 table associated with the two diagnostic tests used in screening has exactly one empty, unknown cell. To estimate the unobserved cell counts, previous approaches assume independence of the two diagnostic tests and use specific models, including the special mixture model of Walter or unconstrained capture–recapture estimates. Often, as is also demonstrated in this article by means of a simple test, the independence of the two screening tests is not supported by the data. Two new estimators are suggested that allow associations of the screening test, although the form of association must be assumed to be homogeneous over disease status. These estimators are modifications of the simple capture–recapture estimator and easy to construct. The estimators are investigated for several screening studies with fully evaluated disease status in which the superior behavior of the new estimators compared to the previous conventional ones can be shown. Finally, the performance of the new estimators is compared with maximum likelihood estimators, which are more difficult to obtain in these models. The results indicate the loss of efficiency as minor.
Resumo:
The contribution investigates the problem of estimating the size of a population, also known as the missing cases problem. Suppose a registration system is targeting to identify all cases having a certain characteristic such as a specific disease (cancer, heart disease, ...), disease related condition (HIV, heroin use, ...) or a specific behavior (driving a car without license). Every case in such a registration system has a certain notification history in that it might have been identified several times (at least once) which can be understood as a particular capture-recapture situation. Typically, cases are left out which have never been listed at any occasion, and it is this frequency one wants to estimate. In this paper modelling is concentrating on the counting distribution, e.g. the distribution of the variable that counts how often a given case has been identified by the registration system. Besides very simple models like the binomial or Poisson distribution, finite (nonparametric) mixtures of these are considered providing rather flexible modelling tools. Estimation is done using maximum likelihood by means of the EM algorithm. A case study on heroin users in Bangkok in the year 2001 is completing the contribution.
Resumo:
Key weather factors determining the occurrence and severity of powdery mildew and yellow rust epidemics on winter wheat were identified. Empirical models were formulated to qualitatively predict a damaging epidemic (>5% severity) and quantitatively predict the disease severity given a damaging epidemic occurred. The disease data used was from field experiments at 12 locations in the UK covering the period from 1994 to 2002 with matching data from weather stations within a 5 km range. Wind in December to February was the most influential factor for a damaging epidemic of powdery mildew. Disease severity was best identified by a model with temperature, humidity, and rain in April to June. For yellow rust, the temperature in February to June was the most influential factor for a damaging epidemic as well as for disease severity. The qualitative models identified favorable circumstances for damaging epidemics, but damaging epidemics did not always occur in such circumstances, probably due to other factors such as the availability of initial inoculum and cultivar resistance.
Resumo:
The article considers screening human populations with two screening tests. If any of the two tests is positive, then full evaluation of the disease status is undertaken; however, if both diagnostic tests are negative, then disease status remains unknown. This procedure leads to a data constellation in which, for each disease status, the 2 x 2 table associated with the two diagnostic tests used in screening has exactly one empty, unknown cell. To estimate the unobserved cell counts, previous approaches assume independence of the two diagnostic tests and use specific models, including the special mixture model of Walter or unconstrained capture-recapture estimates. Often, as is also demonstrated in this article by means of a simple test, the independence of the two screening tests is not supported by the data. Two new estimators are suggested that allow associations of the screening test, although the form of association must be assumed to be homogeneous over disease status. These estimators are modifications of the simple capture-recapture estimator and easy to construct. The estimators are investigated for several screening studies with fully evaluated disease status in which the superior behavior of the new estimators compared to the previous conventional ones can be shown. Finally, the performance of the new estimators is compared with maximum likelihood estimators, which are more difficult to obtain in these models. The results indicate the loss of efficiency as minor.
Resumo:
In this paper, we apply one-list capture-recapture models to estimate the number of scrapie-affected holdings in Great Britain. We applied this technique to the Compulsory Scrapie Flocks Scheme dataset where cases from all the surveillance sources monitoring the presence of scrapie in Great Britain, the abattoir survey, the fallen stock survey and the statutory reporting of clinical cases, are gathered. Consequently, the estimates of prevalence obtained from this scheme should be comprehensive and cover all the different presentations of the disease captured individually by the surveillance sources. Two estimators were applied under the one-list approach: the Zelterman estimator and Chao's lower bound estimator. Our results could only inform with confidence the scrapie-affected holding population with clinical disease; this moved around the figure of 350 holdings in Great Britain for the period under study, April 2005-April 2006. Our models allowed the stratification by surveillance source and the input of covariate information, holding size and country of origin. None of the covariates appear to inform the model significantly. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.
Resumo:
This investigation deals with the question of when a particular population can be considered to be disease-free. The motivation is the case of BSE where specific birth cohorts may present distinct disease-free subpopulations. The specific objective is to develop a statistical approach suitable for documenting freedom of disease, in particular, freedom from BSE in birth cohorts. The approach is based upon a geometric waiting time distribution for the occurrence of positive surveillance results and formalizes the relationship between design prevalence, cumulative sample size and statistical power. The simple geometric waiting time model is further modified to account for the diagnostic sensitivity and specificity associated with the detection of disease. This is exemplified for BSE using two different models for the diagnostic sensitivity. The model is furthermore modified in such a way that a set of different values for the design prevalence in the surveillance streams can be accommodated (prevalence heterogeneity) and a general expression for the power function is developed. For illustration, numerical results for BSE suggest that currently (data status September 2004) a birth cohort of Danish cattle born after March 1999 is free from BSE with probability (power) of 0.8746 or 0.8509, depending on the choice of a model for the diagnostic sensitivity.
Resumo:
A Bayesian approach to analysing data from family-based association studies is developed. This permits direct assessment of the range of possible values of model parameters, such as the recombination frequency and allelic associations, in the light of the data. In addition, sophisticated comparisons of different models may be handled easily, even when such models are not nested. The methodology is developed in such a way as to allow separate inferences to be made about linkage and association by including theta, the recombination fraction between the marker and disease susceptibility locus under study, explicitly in the model. The method is illustrated by application to a previously published data set. The data analysis raises some interesting issues, notably with regard to the weight of evidence necessary to convince us of linkage between a candidate locus and disease.
Resumo:
Natural exposure to prion disease is likely to occur throughout successive challenges, yet most experiments focus on single large doses of infectious material. We analyze the results from an experiment in which rodents were exposed to multiple doses of feed contaminated with the scrapie agent. We formally define hypotheses for how the doses combine in terms of statistical models. The competing hypotheses are that only the total dose of infectivity is important (cumulative model), doses act independently, or a general alternative that interaction between successive doses occurs (to raise or lower the risk of infection). We provide sample size calculations to distinguish these hypotheses. In the experiment, a fixed total dose has a significantly reduced probability of causing infection if the material is presented as multiple challenges, and as the time between challenges lengthens. Incubation periods are shorter and less variable if all material is consumed on one occasion. We show that the probability of infection is inconsistent with the hypothesis that each dose acts as a cumulative or independent challenge. The incubation periods are inconsistent with the independence hypothesis. Thus, although a trend exists for the risk of infection with prion disease to increase with repeated doses, it does so to a lesser degree than is expected if challenges combine independently or in a cumulative manner.
Resumo:
The aim of this review article is to provide an overview of the role of pigs as a biomedical model for humans. The usefulness and limitations of porcine models have been discussed in terms of metabolic, cardiovascular, digestive and bone diseases in humans. Domestic pigs and minipigs are the main categories of pigs used as biomedical models. One drawback of minipigs is that they are in short supply and expensive compared with domestic pigs, which in contrast cost more to house, feed and medicate. Different porcine breeds show different responses to the induction of specific diseases. For example, ossabaw minipigs provide a better model than Yucatan for the metabolic syndrome as they exhibit obesity, insulin resistance and hypertension, all of which are absent in the Yucatan. Similar metabolic/physiological differences exist between domestic breeds (e.g. Meishan v. Pietrain). The modern commercial (e.g. Large White) domestic pig has been the preferred model for developmental programming due to the 2- to 3-fold variation in body weight among littermates providing a natural form of foetal growth retardation not observed in ancient (e.g. Meishan) domestic breeds. Pigs have been increasingly used to study chronic ischaemia, therapeutic angiogenesis, hypertrophic cardiomyopathy and abdominal aortic aneurysm as their coronary anatomy and physiology are similar to humans. Type 1 and II diabetes can be induced in swine using dietary regimes and/or administration of streptozotocin. Pigs are a good and extensively used model for specific nutritional studies as their protein and lipid metabolism is comparable with humans, although pigs are not as sensitive to protein restriction as rodents. Neonatal and weanling pigs have been used to examine the pathophysiology and prevention/treatment of microbial-associated diseases and immune system disorders. A porcine model mimicking various degrees of prematurity in infants receiving total parenteral nutrition has been established to investigate gut development, amino acid metabolism and non-alcoholic fatty liver disease. Endoscopic therapeutic methods for upper gastrointestinal tract bleeding are being developed. Bone remodelling cycle in pigs is histologically more similar to humans than that of rats or mice, and is used to examine the relationship between menopause and osteoporosis. Work has also been conducted on dental implants in pigs to consider loading; however with caution as porcine bone remodels slightly faster than human bone. We conclude that pigs are a valuable translational model to bridge the gap between classical rodent models and humans in developing new therapies to aid human health.
Resumo:
Knowledge of the differences between the amounts and types of protein that are expressed in diseased compared to healthy subjects may give an understanding of the biological pathways that cause disease. This is the reasoning behind the presented protocol, which uses difference gel electrophoresis to discover up‐ or down‐regulated proteins between mice of different genotypes, or of those fed on different diets, that may thus be prone to develop diabetes‐like phenotypes. Subsequent analysis of these proteins by tandem mass spectrometry typically facilitates their identification with a high degree of confidence.
Resumo:
Observational evidence is scarce concerning the distribution of plant pathogen population sizes or densities as a function of time-scale or spatial scale. For wild pathosystems we can only get indirect evidence from evolutionary patterns and the consequences of biological invasions.We have little or no evidence bearing on extermination of hosts by pathogens, or successful escape of a host from a pathogen. Evidence over the last couple of centuries from crops suggest that the abundance of particular pathogens in the spectrum affecting a given host can vary hugely on decadal timescales. However, this may be an artefact of domestication and intensive cultivation. Host-pathogen dynamics can be formulated mathematically fairly easily–for example as SIR-type differential equation or difference equation models, and this has been the (successful) focus of recent work in crops. “Long-term” is then discussed in terms of the time taken to relax from a perturbation to the asymptotic state. However, both host and pathogen dynamics are driven by environmental factors as well as their mutual interactions, and both host and pathogen co-evolve, and evolve in response to external factors. We have virtually no information about the importance and natural role of higher trophic levels (hyperpathogens) and competitors, but they could also induce long-scale fluctuations in the abundance of pathogens on particular hosts. In wild pathosystems the host distribution cannot be modelled as either a uniform density or even a uniform distribution of fields (which could then be treated as individuals). Patterns of short term density-dependence and the detail of host distribution are therefore critical to long-term dynamics. Host density distributions are not usually scale-free, but are rarely uniform or clearly structured on a single scale. In a (multiply structured) metapopulation with coevolution and external disturbances it could well be the case that the time required to attain equilibrium (if it exists) based on conditions stable over a specified time-scale is longer than that time-scale. Alternatively, local equilibria may be reached fairly rapidly following perturbations but the meta-population equilibrium be attained very slowly. In either case, meta-stability on various time-scales is a more relevant than equilibrium concepts in explaining observed patterns.
Resumo:
The human gut is a complex ecosystem occupied by a diverse microbial community. Modulation of this microbiota impacts health and disease. The definitive way to investigate the impact of dietary intervention on the gut microbiota is a human trial. However, human trials are expensive and can be difficult to control; thus, initial screening is desirable. Utilization of a range of in vitro and in vivo models means that useful information can be gathered prior to the necessity for human intervention. This review discusses the benefits and limitations of these approaches.
Resumo:
Background Recent studies indicate an increased frequency of mutations in the gene encoding glucocerebrosidase (GBA), a deficiency of which causes Gaucher`s disease, among patients with Parkinson`s disease. We aimed to ascertain the frequency of GBA mutations in an ethnically diverse group of patients with Parkinson`s disease. Methods Sixteen centers participated in our international, collaborative study: five from the Americas, six from Europe, two from Israel, and three from Asia. Each center genotyped a standard DNA panel to permit comparison of the genotyping results across centers. Genotypes and phenotypic data from a total of 5691 patients with Parkinson`s disease (780 Ashkenazi Jews) and 4898 controls (387 Ashkenazi Jews) were analyzed, with multivariate logistic-regression models and the Mantel-Haenszel procedure used to estimate odds ratios across centers. Results All 16 centers could detect two GBA mutations, L444P and N370S. Among Ashkenazi Jewish subjects, either mutation was found in 15% of patients and 3% of controls, and among non-Ashkenazi Jewish subjects, either mutation was found in 3% of patients and less than 1% of controls. GBA was fully sequenced for 1883 non-Ashkenazi Jewish patients, and mutations were identified in 7%, showing that limited mutation screening can miss half the mutant alleles. The odds ratio for any GBA mutation in patients versus controls was 5.43 across centers. As compared with patients who did not carry a GBA mutation, those with a GBA mutation presented earlier with the disease, were more likely to have affected relatives, and were more likely to have atypical clinical manifestations. Conclusions Data collected from 16 centers demonstrate that there is a strong association between GBA mutations and Parkinson`s disease.
Resumo:
The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.