864 resultados para Direct currents
Resumo:
Laser flash photolysis studies of silylene, SiH2, generated by the 193 nm laser flash photolysis phenylsilane, PhSiH3, have been carried out to obtain rate constants for its bimolecular reaction with PhSiH3 itself, in the gas phase. The reaction was studied in SF6 (mostly at 10 Torr total pressure) over the temperature range 298-595 K. The rate constants (also found to be pressure independent) gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-9.92 +/- 0.04) + (3.31 +/- 0.27) kJ mol(-1)/RT ln 10 Similar investigations of the reaction of silylene with benzene, C6H6, (295-410 K) gave data suggestive of the fact that SiH2 might be reacting with photochemical products of C6H6 as well as with C6H6 itself. However, in the latter system, apparent rate constants were sufficiently low to indicate that in the reaction of SiH2 with PhSiH3 addition to the aromatic ring was unlikely to be in excess of 3% of the total. Quantum chemical calculations of the energy surface for SiH2 + C6H6 indicate that 7-silanorcaradiene and 7-silacycloheptatriene are possible products but that PhSiH3 formation is unlikely. RRKM calculations suggest that 7-silanorcaradiene should be the initial product but that it cannot be collisionally stabilized under experimental conditions
Resumo:
Amyloid fibrils resulting from uncontrolled peptide aggregation are associated with several neurodegenerative diseases. Their polymorphism depends on a number of factors including pH, ionic strength, electrostatic interactions, hydrophobic interactions, hydrogen bonding, aromatic stacking interactions, and chirality. Understanding the mechanism of amyloid fibril formation can improve strategies towards the prevention of fibrillation processes and enable a wide range of potential applications in nanotemplating and nanotechnology.
Resumo:
The “case for real estate” in the mixed-asset portfolio is a topic of continuing interest to practitioners and academics. The argument is typically made by comparing efficient frontiers of portfolio with real estate to those that exclude real estate. However, most investors will have held inefficient portfolios. Thus, when analysing the real estate’s place in the mixed-asset portfolio it seems illogical to do so by comparing the difference in risk-adjusted performance between efficient portfolios, which few if any investor would have held. The approach adopted here, therefore, is to compare the risk-adjusted performance of a number of mixed-asset portfolios without real estate (which may or not be efficient) with a very large number of mixed-asset portfolios that include real estate (which again may or may not be efficient), to see the proportion of the time when there is an increase in risk-adjusted performance, significant or otherwise using appraisal-based and de-smoothed annual data from 1952-2003. So to the question how often does the addition of private real estate lead to increases the risk-adjusted performance compared with mixed-asset portfolios without real estate the answer is almost all the time. However, significant increases are harder to find. Additionally, a significant increase in risk-adjusted performance can come from either reductions in portfolio risk or increases in return depending on the investors’ initial portfolio structure. In other words, simply adding real estate to a mixed-asset portfolio is not enough to ensure significant increases in performance as the results are dependent on the percentage added and the proper reallocation of the initial portfolio mix in the expanded portfolio.
Resumo:
For over twenty years researchers have been recommending that investors diversify their portfolios by adding direct real estate. Based on the tenets of modern portfolio theory (MPT) investors are told that the primary reason they should include direct real estate is that they will enjoy decreased volatility (risk) through increased diversification. However, the MPT methodology hides where this reduction in risk originates. To over come this deficiency we use a four-quadrant approach to break down the co-movement between direct real estate and equities and bonds into negative and positive periods. Then using data for the last 25-years we show that for about 70% of the time a holding in direct real estate would have hurt portfolio returns, i.e. when the other assets showed positive performance. In other words, for only about 30% of the time would a holding in direct real estate lead to improvements in portfolio returns. However, this increase in performance occurs when the alternative asset showed negative returns. In addition, adding direct real estate always leads to reductions in portfolio risk, especially on the downside. In other words, although adding direct real estate helps the investor to avoid large losses it also reduces the potential for large gains. Thus, if the goal of the investor is offsetting losses, then the results show that direct real estate would have been of some benefit. So in answer to the question when does direct real estate improve portfolio performance the answer is on the downside, i.e. when it is most needed.
Resumo:
This review looks at the work carried out over the past 15 years on membrane distillation and reports the conditions utilized for research. The process is still used mainly at the laboratory scale, but a few pilot plants have been built across the world, mostly for desalination and the production of potable water. Studies into membrane distillation have been concerned with the effect of mass transfer, heat transfer, and stirring rate, but the most important effect that has to be considered with this process is temperature polarization. A section on temperature polarization and the effect of boundary layers is included in this review.