910 resultados para Diabetes glucose metabolism


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibilityto and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesionto the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways) may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background Type 1 diabetes (T1DM) is frequently accompanied by dyslipidemia related with insulin-dependent steps of the intravascular lipoprotein metabolism. T1DM dyslipidemia may predispose to precocious cardiovascular disease and the lipid status in T1DM under intensive insulin treatment has not been sufficiently explored. The aim was to investigate the plasma lipids and the metabolism of LDL and HDL in insulin-treated T1DM patients with high glycemic levels. Methods Sixteen male patients with T1DM (26 ± 7 yrs) with glycated hemoglobin >7%, and 15 control subjects (28 ± 6 yrs) were injected with a lipid nanoemulsion (LDE) resembling LDL and labeled with 14C-cholesteryl ester and 3H-free-cholesterol for determination of fractional clearance rates (FCR, in h-1) and cholesterol esterification kinetics. Transfer of labeled lipids from LDE to HDL was assayed in vitro. Results LDL-cholesterol (83 ± 15 vs 100 ± 29 mg/dl, p=0.08) tended to be lower in T1DM than in controls; HDL-cholesterol and triglycerides were equal. LDE marker 14C-cholesteryl ester was removed faster from plasma in T1DM patients than in controls (FCR=0.059 ± 0.022 vs 0.039 ± 0.022h-1, p=0.019), which may account for their lower LDL-cholesterol levels. Cholesterol esterification kinetics and transfer of non-esterified and esterified cholesterol, phospholipids and triglycerides from LDE to HDL were also equal. Conclusion T1DM patients under intensive insulin treatment but with poor glycemic control had lower LDL-cholesterol with higher LDE plasma clearance, indicating that LDL plasma removal was even more efficient than in controls. Furthermore, HDL-cholesterol and triglycerides, cholesterol esterification and transfer of lipids to HDL, an important step in reverse cholesterol transport, were all normal. Coexistence of high glycemia levels with normal intravascular lipid metabolism may be related to differences in exogenous insulin bioavailabity and different insulin mechanisms of action on glucose and lipids. Those findings may have important implications for prevention of macrovascular disease by intensive insulin treatment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

OBJECTIVE- Diabetes, a major health problem worldwide, increases the risk of cardiovascular disease and its associated mortality. Evidence of the overall benefits of lipid modification in this area is needed. RESEARCH DESIGN AND METHODS- The Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) trial showed that cholesterol-lowering treatment with pravastatin reduced mortality and coronary heart disease (CHD) events in 9,014 patients aged 31-75 years with CHD and total cholesterol 4.0-7.0 mmol/l. We measured the effects of pravastatin therapy, 40 mg/day over 6.0 years, on the risk of CHD death or nonfatal myocardial infarction and other cardiovascular outcomes in 1,077 LIPID patients with diabetes and 940 patients with impaired fasting glucose (IFG). RESULTS- in patients allocated to placebo, the risk of a major CHD event was 61% higher in patients with diabetes and 23% higher in the IFG group than in patients with normal fasting glucose, and the risk of any cardiovascular event was 37% higher in the diabetic group and 19% higher in the IFG group. Pravastatin therapy reduced the risk of a major CHD event overall from 15.9 to 12.3% (relative risk reduction [RRR] 24%, P < 0.001) and from 23.4 to 19.6% in the diabetic group (19%, P = 0.11); in the diabetic group, the reduction was not significantly different from the reductions in the other groups. Pravastatin reduced the risk of any cardiovascular event from 52.7 to 45.2% (21%, P < 0.008) in patients With diabetes and from 45.7 to 37.1% (26%, P = 0.003) in the IFG group. Pravastatin reduced the risk of stroke from 9.9 to 6.3% in the diabetic group (RRR 39%, Cl 7-61%, P = 0.02) and from 5.4 to 3.4% in the IFG group (RRR 42%, Cl -9 to 69%, P = 0.09). Pravastatin did not reduce the incidence of diabetes. Over 6 years, pravastatin therapy prevented one major,CHD event (CHD death or nonfatal myocardial infarction) in 23 patients with IFG and 18 patients with diabetes. A meta-analysis of other major trials confirmed the high absolute risks of diabetes and IFG and the absolute benefits of statin therapy in these patients. CONCLUSIONS- Cholesterol-lowering treatment with pravastatin therapy prevents cardiovascular events, including stroke, in patients with diabetes or IFG and established CHD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To estimate the impact of aging and diabetes on insulin sensitivity, beta-cell function, adipocytokines, and incretin production. Hyperglycemic clamps, arginine tests and meal tolerance tests were performed in 50 non-obese subjects to measure insulin sensitivity (IS) and insulin secretion as well as plasma levels of glucagon, GLP-1 and GIP. Patients with diabetes and healthy control subjects were divided into the following groups: middle-aged type 2 diabetes (MA-DM), aged Type 2 diabetes (A-DM) and middle-aged or aged subjects with normal glucose tolerance (MA-NGT or A-NGT). IS, as determined by the homeostasis model assessment, glucose infusion rate, and oral glucose insulin sensitivity, was reduced in the aged and DM groups compared with MA-NGT, but it was similar in the MA-DM and A-DM groups. Insulinogenic index, first and second phase insulin secretion and the disposition indices, but not insulin response to arginine, were reduced in the aged and DM groups. Postprandial glucagon production was higher in MA-DM compared to MA-NGT. Whereas the GLP-1 production was reduced in A-DM, no differences between groups were observed in GIP production. In non-obese subjects, diabetes and aging impair insulin sensitivity. Insulin production is reduced by aging, and diabetes exacerbates this condition. Aging associated defects superimposed diabetic physiopathology, particularly regarding GLP-1 production. On the other hand, the glucose-independent secretion of insulin was preserved. Knowledge of the complex relationship between aging and diabetes could support the development of physiopathological and pharmacological based therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of studies have proposed an anti-diabetic effect for tarchonanthuslactone based on its structural similarity with caffeic acid, a compound known for its blood glucose-reducing properties. However, the actual effect of tarchonanthuslactone on blood glucose level has never been tested. Here, we report that, in opposition to the common sense, tarchonanthuslactone has a glucose-increasing effect in a mouse model of obesity and type 2 diabetes mellitus. The effect is acute and non-cumulative and is present only in diabetic mice. In lean, glucose-tolerant mice, despite a slight increase in blood glucose levels, the effect was not significant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucose enters eukaryotic cells via two types of membrane-associated carrier proteins, the Na+/glucose cotransporters (SGLT) and the facilitative glucose transporters (GLUT). The SGLT family consists of six members. Among them, the SGLT1 and SGLT2 proteins, encoded by the solute carrier genes SLC5A1 and SLC5A2, respectively, are believed to be the most important ones and have been extensively explored in studies focusing on glucose fluxes under both physiological and pathological conditions. This review considers the regulation of the expression of the SGLT promoted by protein kinases and transcription factors, as well as the alterations determined by diets of different compositions and by pathologies such as diabetes. It also considers congenital defects of sugar metabolism caused by aberrant expression of the SGLT1 in glucose-galactose malabsorption and the SGLT2 in familial renal glycosuria. Finally, it covers some pharmacological compounds that are being currently studied focusing on the interest of controlling glycemia by antagonizing SGLT in renal and intestinal tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: An evaluation of patients' preferences is necessary to understand the demand for different insulin delivery systems. The aim of this study was to investigate the association between socioeconomic status (SES) and patients' preferences and willingness to pay (WTP) for various attributes of insulin administration for diabetes management. Methods: We conducted a discrete choice experiment (DCE) to determine patients' preferences and their WTP for hypothetical insulin treatments. Both self-reported annual household income and education completed were used to explore differences in treatment preferences and WTP for different attributes of treatment across different levels of SES. Results: The DCE questionnaire was successfully completed by 274 patients. Overall, glucose control was the most valued attribute by all socioeconomic groups, while route of insulin delivery was not as important. Patients with higher incomes were willing to pay significantly more for better glucose control and to avoid adverse events compared to lower income groups. In addition, they were willing to pay more for an oral short-acting insulin ($Can 71.65 [95% confidence interval, $40.68, $102.62]) compared to the low income group ($Can 9.85 [95% confidence interval, 14.86, 34.56; P < 0.01]). Conversely, there were no differences in preferences when the sample was stratified by level of education. Conclusions: This study revealed that preferences and WTP for insulin therapy are influenced by income but not by level of education. Specifically, the higher the income, the greater desire for an oral insulin delivery system, whereas an inhaled route becomes less important for patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Hypertension, diabetes and obesity are not isolated findings, but a series of interacting interactive physiologic derangements. Taking into account genetic background and lifestyle behavior, AI (autonomic imbalance) could be a common root for RHTN (resistant hypertension) or RHTN plus type 2 diabetes (T2D) comorbidity development. Moreover, circadian disruption can lead to metabolic and vasomotor impairments such as obesity, insulin resistance and resistant hypertension. In order to better understand the triggered emergence of obesity and T2D comorbidity in resistant hypertension, we investigated the pattern of autonomic activity in the circadian rhythm in RHTN with and without type 2 diabetes (T2D), and its relationship with serum adiponectin concentration. Methods: Twenty five RHTN patients (15 non-T2D and 10 T2D, 15 males, 10 females; age range 34 to 70 years) were evaluated using the following parameters: BMI (body mass index), biochemical analysis, serum adiponectinemia, echocardiogram and ambulatory electrocardiograph heart rate variability (HRV) in time and frequency domains stratified into three periods: 24 hour, day time and night time. Results: Both groups demonstrated similar characteristics despite of the laboratory analysis concerning T2D like fasting glucose, HbA1c levels and hypertriglyceridemia. Both groups also revealed disruption of the circadian rhythm: inverted sympathetic and parasympathetic tones during day (parasympathetic > sympathetic tone) and night periods (sympathetic > parasympathetic tone). T2D group had increased BMI and serum triglyceride levels (mean 33.7 +/- 4.0 vs 26.6 +/- 3.7 kg/m(2) - p = 0.00; 254.8 +/- 226.4 vs 108.6 +/- 48.7 mg/dL - p = 0.04), lower levels of adiponectin (6729.7 +/- 3381.5 vs 10911.5 +/- 5554.0 ng/mL - p = 0.04) and greater autonomic imbalance evaluated by HRV parameters in time domain compared to non-T2D RHTN patients. Total patients had HRV correlated positively with serum adiponectin (r = 0.37 [95% CI - 0.04 - 1.00] p = 0.03), negatively with HbA1c levels (r = -0.58 [95% CI -1.00 - -0.3] p = 0.00) and also adiponectin correlated negatively with HbA1c levels (r = -0.40 [95% CI -1.00 - -0.07] p = 0.02). Conclusion: Type 2 diabetes comorbidity is associated with greater autonomic imbalance, lower adiponectin levels and greater BMI in RHTN patients. Similar circadian disruption was also found in both groups indicating the importance of lifestyle behavior in the genesis of RHTN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: To determine the prevalence of diabetes mellitus (DM) and impaired glucose tolerance (IGT) in a rural community (Bengo) of Angola. Methods: A random sample of 421 subjects aged 30 to 69 years (30% men and 70% women) was selected from three villages of Bengo province. This cross-sectional home survey was conducted using a sampling design of stage conglomerates. First, clinical and anthropometric data were obtained and fasting capillary glucose level was determined. Subjects who screened positive (fasting capillary glucose >= 100 mg/dl and < 200 mg/dl) and each sixth consecutive subject who screened negative (fasting capillary glucose < 100 mg/dl) were submitted to the second phase of survey, consisting of the 75 g oral glucose tolerance test. Data was analyzed by the use of SAS statistical software. Results: The prevalence rates of diabetes mellitus and IGT were 2.8% and 8.1%, respectively. The age group with the highest prevalence of diabetes was 60 to 69 years (42%). Impaired glucose tolerance prevalence was 38% in the 40 to 49 year age group and it increased with age, considering that the 50 to 59 and 60 to 69 year age groups as a whole represent 50% of all subjects with impaired glucose tolerance. The prevalence of diabetes mellitus did not differ significantly between men (3.2%) and women (2.7%) (p = 0.47). On the other hand, the prevalence of impaired glucose tolerance among women showed almost twice that found in men (9.1% vs. 5.6%, respectively). Overweight was present in 66.7% of the individuals with diabetes mellitus and 26.5% of individuals with impaired glucose tolerance showed overweight or obesity. Conclusions: Although the prevalence of diabetes mellitus was low, the prevalence of impaired glucose tolerance is considered to be within an intermediary range, suggesting a future increase in the frequency of diabetes in this population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: To evaluate the effect of laser irradiation (LI) on the glycemic state and the histological and ionic parameters of the parotid and submandibular glands in rats with diabetes. Methods: One hundred twenty female rats were divided into eight groups. Diabetes was induced by administration of streptozotocin and confirmed later according to results of glycemia testing. Twenty-nine days after the induction, the parotid and submandibular glands of the rats were irradiated with 5, 10, and 20 J/cm(2) using a laser diode (660nm/100mW) (without diabetes: C5, C10, and C20; with diabetes: D5, D10, and D20, respectively). On the following day, the rats were euthanized, and blood glucose determined. Histological and ionic analyses were performed. Results: Rats with diabetes without irradiation (D0) showed lipid droples accumulation in the parotid gland, but accumulation decreased after 5, 10, and 20 J/cm(2) of laser irradiation. A decrease in fasting glycemia level from 358.97 +/- 56.70 to 278.33 +/- 87.98mg/dL for D5 and from 409.50 +/- 124.41 to 231.80 +/- 120.18 mg/dL for D20 (p < 0.05) was also observed. Conclusion: LI should be explored as an auxiliary therapy for control of complications of diabetes because it can alter the carbohydrate and lipid metabolism of rats with diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored. Methods: Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2) in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR) similar to 250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD) or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA) were evaluated. Catheters were implanted into the femoral artery to evaluate arterial pressure (AP) and heart rate variability (spectral analysis) one day later in conscious animals. Animals were killed, kidneys removed, and cortical renal GLUT2 quantified (Western blotting). Results: Higher glycemia (p < 0.05) and lower mean AP were observed in diabetics vs. nondiabetics (p < 0.05). Heart rate was higher in renal-denervated hypertensive and lower in diabetic-hypertensive rats (384.8 +/- 37, 431.3 +/- 36, 316.2 +/- 5, 363.8 +/- 12 bpm in SHR, RD-SHR, STZ-SHR and RD-STZ-SHR, respectively). Heart rate variability was higher in renal-denervated diabetic-hypertensive rats (55.75 +/- 25.21, 73.40 +/- 53.30, 148.4 +/- 93 in RD-SHR, STZ-SHR-and RD-STZ-SHR, respectively, p < 0.05), as well as the LF component of AP variability (1.62 +/- 0.9, 2.12 +/- 0.9, 7.38 +/- 6.5 in RD-SHR, STZ-SHR and RD-STZ-SHR, respectively, p < 0.05). GLUT2 renal content was higher in all groups vs. SHR. Conclusions: Renal denervation in diabetic-hypertensive rats improved previously reduced heart rate variability. The GLUT2 equally overexpressed by diabetes and renal denervation may represent a maximal derangement effect of each condition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose This study investigated the influence of gestational diabetes mellitus on the kinetic disposition and stereoselective metabolism of labetalol administered intravenously or orally. Methods Thirty hypertensive women during the last trimester of pregnancy were divided into four groups: non-diabetic and diabetic women treated with intravenous or oral labetalol. Results The pharmacokinetics of labetalol was not stereoselective in diabetic or non-diabetic pregnant women receiving the drug intravenously. However, oral administration of labetalol resulted in lower values of the area under the plasma concentration versus time curve (AUC) for the beta-blocker (RR) than for the other enantiomers in both diabetic and non-diabetic women. Gestational diabetes mellitus caused changes in the kinetic disposition of the labetalol stereoisomers when administered orally. The AUC values for the less potent adrenoceptor antagonist (SS) and for the alpha-blocking (SR) isomers were higher in diabetic than in non-diabetic pregnant women. Conclusions The approximately 100% higher AUC values obtained for the (SR) isomer in diabetic pregnant women treated with oral labetalol may be of clinical relevance in terms of the alpha-blocking activity of this isomer.