962 resultados para Density functional theory calculations
Resumo:
We investigate the liquid-vapor interface of a model of patchy colloids. This model consists of hard spheres decorated with short-ranged attractive sites ("patches") of different types on their surfaces. We focus on a one-component fluid with two patches of type A and nine patches of type B (2A9B colloids), which has been found to exhibit reentrant liquid-vapor coexistence curves and very low-density liquid phases. We have used the density-functional theory form of Wertheim's first-order perturbation theory of association, as implemented by Yu and Wu [J. Chem. Phys. 116, 7094 (2002)], to calculate the surface tension, and the density and degree of association profiles, at the liquid-vapor interface of our model. In reentrant systems, where AB bonds dominate, an unusual thickening of the interface is observed at low temperatures. Furthermore, the surface tension versus temperature curve reaches a maximum, in agreement with Bernardino and Telo da Gama's mesoscopic Landau-Safran theory [Phys. Rev. Lett. 109, 116103 (2012)]. If BB attractions are also present, competition between AB and BB bonds gradually restores the monotonic temperature dependence of the surface tension. Lastly, the interface is "hairy," i.e., it contains a region where the average chain length is close to that in the bulk liquid, but where the density is that of the vapor. Sufficiently strong BB attractions remove these features, and the system reverts to the behavior seen in atomic fluids.
Resumo:
Methanol decomposition is one of the key reactions in direct methanol fuel cell (DMFC) state-of-the-art technology, research, and development. However, its mechanism still presents many uncertainties, which, if answered, would permit us to refine the manufacture of DMFCs. The mechanism of methanol decomposition on ruthenium surfaces was investigated using density functional theory and a periodic supercell approach. The possible pathways, involving either initial C−H, C−O or O−H scission, were defined from experimental evidence regarding the methanol decomposition on ruthenium and other metallic surfaces. The study yielded the O−H scission pathway as having both the most favorable energetics and kinetics. The computational data, which present a remarkable closeness with the experimental results, also indicate methanol adsorption, the starting point in all possible pathways, to be of weak nature, implying a considerable rate of methanol desorption from the ruthenium, compromising the reaction.
Resumo:
J Biol Inorg Chem (2011) 16:1255–1268 DOI 10.1007/s00775-011-0813-8
Resumo:
Different procedures to obtain atom condensed Fukui functions are described. It is shown how the resulting values may differ depending on the exact approach to atom condensed Fukui functions. The condensed Fukui function can be computed using either the fragment of molecular response approach or the response of molecular fragment approach. The two approaches are nonequivalent; only the latter approach corresponds in general with a population difference expression. The Mulliken approach does not depend on the approach taken but has some computational drawbacks. The different resulting expressions are tested for a wide set of molecules. In practice one must make seemingly arbitrary choices about how to compute condensed Fukui functions, which suggests questioning the role of these indicators in conceptual density-functional theory
Resumo:
To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values
Resumo:
In earlier work, the present authors have shown that hardness profiles are less dependent on the level of calculation than energy profiles for potential energy surfaces (PESs) having pathological behaviors. At variance with energy profiles, hardness profiles always show the correct number of stationary points. This characteristic has been used to indicate the existence of spurious stationary points on the PESs. In the present work, we apply this methodology to the hydrogen fluoride dimer, a classical difficult case for the density functional theory methods
Resumo:
Nonlocal approximations for the electronic exchange and correlation effects are used to compute, within density-functional theory, the polarizability and surface-plasma frequencies of small jelliumlike alkali-metal clusters. The results are compared with those obtained using the local-density approximation and with available experimental data, showing the relevance of these effects in obtaining an accurate description of the surface response of metallic clusters.
Resumo:
In the framework of a finite-range density-functional theory, we compute the response of 4HeN clusters doped with a rare-gas molecule. For this purpose, the mean field for the 4He atoms, their wave functions and effective quasiparticle interaction, are self-consistently calculated for a variety of particle numbers in the cluster. The response function is then evaluated for several multipolarities in each drop and the collective states are consequently located from the peaks of the strength function. The spectra of pure droplets approach those previously extracted with a similar algorithm resorting to a zero-range density functional. The spectra of doped clusters are sensitive to the presence of the impurity and are worth a future systematic investigation.
Resumo:
We have carried out a systematic analysis of the transverse dipole spin response of a large-size quantum dot within time-dependent current density functional theory. Results for magnetic fields corresponding to integer filling factors are reported, as well as a comparison with the longitudinal dipole spin response. As in the two-dimensional electron gas, the spin response at high-spin magnetization is dominated by a low-energy transverse mode.
Resumo:
A density-functional self-consistent calculation of the ground-state electronic density of quantum dots under an arbitrary magnetic field is performed. We consider a parabolic lateral confining potential. The addition energy, E(N+1)-E(N), where N is the number of electrons, is compared with experimental data and the different contributions to the energy are analyzed. The Hamiltonian is modeled by a density functional, which includes the exchange and correlation interactions and the local formation of Landau levels for different equilibrium spin populations. We obtain an analytical expression for the critical density under which spontaneous polarization, induced by the exchange interaction, takes place.
Resumo:
We investigate the spreading of 4He droplets on alkali-metal surfaces at zero temperature, within the frame of finite range density-functional theory. The equilibrium configurations of several 4HeN clusters and their asymptotic trend with increasing particle number N, which can be traced to the wetting behavior of the quantum fluid, are examined for nanoscopic droplets. We discuss the size effects inferring that the asymptotic properties of large droplets correspond to those of the prewetting film.
Resumo:
Integer filling factor phases of many-electron vertically coupled diatomic artificial quantum dot molecules are investigated for different values of the interdot coupling. The experimental results are analyzed within local-spin density functional theory for which we have determined a simple lateral confining potential law that can be scaled for the different coupling regimes, and Hartree-Fock theory. Maximum density droplets composed of electrons in both bonding and antibonding or just bonding states are revealed, and interesting isospin-flip physics appears for weak interdot coupling when the systematic depopulation of antibonding states leads to changes in isospin.
Resumo:
We present a complete calculation of the structure of liquid 4He confined to a concave nanoscopic wedge, as a function of the opening angle of the walls. This is achieved within a finite-range density functional formalism. The results here presented, restricted to alkali metal substrates, illustrate the change in meniscus shape from rather broad to narrow wedges on weak and strong alkali adsorbers, and we relate this change to the wetting behavior of helium on the corresponding planar substrate. As the wedge angle is varied, we find a sequence of stable states that, in the case of cesium, undergo one filling and one emptying transition at large and small openings, respectively. A computationally unambiguous criterion to determine the contact angle of 4He on cesium is also proposed.