986 resultados para Defense Responses
Resumo:
The freshwater, bloom-forming cyanobacterium (blue-green alga) Microcystis aeruginosa produces a peptide hepatotoxin, which causes the damage of animal liver. Recently, toxic Microcystis blooms frequently occur in the eutrophic Dianchi Lake (300 km(2) and located in the South-Westem of China). Microcystin-LR from Microcystis in Dianchi was isolated and purified by high performance liquid chromatography (HPLC) and its toxicity to mouse and fish liver was studied (Li et al., 2001). In this study, six biochemical parameters (reactive oxygen species, glutathione, superoxide dismutase, catalase, glutathione peroxide and glutathione S-transferase) were determined in common carp hepatocytes when the cells were exposed to 10 mug microcystin-LR per litre. The results showed that reactive oxygen species (ROS) contents increased by more than one-time compared with the control after 6 h exposure to the toxin. In contrast, glutathione (GSH) levels in the hepatocytes exposed to microcystin-LR decreased by 47% compared with the control. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxide (GSH-Px) increased significantly after 6 h exposure to microcystin-LR, but glutathione S-transferase (GST) activity showed no difference from the control. These results suggested that the toxicity of microcystin-LR caused the increase of ROS contents and the depletion of GSH in hepatocytes exposed to the toxin and these changes led to oxidant shock in hepatocytes. Increases of SOD, CAT and GSH-Px activities revealed that these three kinds of antioxidant enzymes might play important roles in eliminating the excessive ROS. This paper also examined the possible toxicity mechanism of microcystin-LR on the fish hepatocytes and the results were similar to those with mouse hepatocytes. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Intertidal macroalgae experience continual alternation of photosynthesis between aquatic state at high tide and aerial state at low tide. The comparative photosynthetic responses to inorganic carbon were investigated in the common intertidal macroalga Ulva lactuca L. along the coast of Shantou between aquatic and aerial state. The inorganic carbon dissolved in seawater at present could fully (at 10 degreesC or 20 degreesC) or nearly (at 30 degreesC) saturate the aquatic photosynthesis of U. lactuca. However, the aerial photosynthesis was limited by current ambient atmospheric CO2 level, and such a limitation was more severe at higher temperature (20degrees - 30degrees T) than at lower temperature (10 T). The carbon-saturated maximal photosynthesis of U. lactuca under aerial state was much greater than that under aquatic state at 10 degreesC and 20 degreesC, while the maximal photosynthesis under both states was similar at 30 degreesC. The aerial values of K-m (CO2) for photosynthesis were higher than the aquatic values. On the contrary, the values of apparent photosynthetic CO2 conductance under aerial state were considerably lower than that under aquatic state. It was concluded that the increase of atmospheric CO2 would enhance the primary productivity of U. lactuca through stimulating the photosynthesis under aerial state during low tide.
Resumo:
Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.
Resumo:
The compensatory growth responses of individual juveniles of two co-existing species were compared after identical periods of starvation to determine inter-specific similarities and differences. The carnivorous stickleback Gasterosteus aculeatus was compared with the omnivorous minnow Phoxinus phoxinus. Both species experienced 1 or 2 weeks of starvation before being re-fed ad libitum. The two species differed in their response to the starvation periods, with minnows showing a lower weight-specific loss. Both species showed compensatory responses in appetite, growth and to a lesser extent, growth efficiency. Minnows wholly compensated for 1 and 2 weeks of starvation. At the end of the experiment, sticklebacks starved For 2 weeks were still showing a compensatory response and had nut achieved full compensation. The compensatory responses of the sticklebacks showed a lag of a week before developing in the re-feeding phase, whereas the response of the minnows was immediate. Analysis of lipid and dry matter concentrations suggested that the compensatory response restored reserve lipids while also bringing the fish back to the growth trajectory of continuously fed fish. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
Clinorotation experiments were established to simulate microgravity on ground. It was found that there were obvious changes of Dunaliella salina FACHB435 cells and their metabolic characteristics during clinorotation. The changes included the increases of glycerol content, the rate of H+ secretion and PM H+-ATPase activity, and the decrease of ratio of the plasma membrane (PM) phospholipid to PM protein. These results indicated that microgravity was a stress environment to Dunaliella salina. It is deduced that it would be possible to attribute the effect of microgravity on algal cells to the secondary activation of water stress.
Resumo:
An improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system consisting of a distributed Bragg reflector laser is proposed. The time-resolved spectrum technique is used to measure the peak power of the beat signal and the intrinsic linewidth of heat signal for calibration. The experimental results show that the impact of the thermal-induced frequency drift, which is the main reason for producing an error in measurement by conventional peak power method and spectrum power method, can be removed.
Resumo:
Thermal effects will make chip temperature change with bias current of semiconductor lasers, which results in inaccurate intrinsic response by the conventional subtraction method. In this article, an extended subtraction method of scattering parameters for characterizing adiabatic responses of laser diode is proposed. The pulsed injection operation is used to determine the chip temperature of packaged semiconductor laser, and an optimal injection condition is obtained by investigating the dependence of the lasing wavelength on the width and period of the injection pulse in a relatively wide temperature range. In this case, the scattering parameters of laser diode are measured on adiabatic condition and the adiabatic intrinsic responses of packaged laser diode are first extracted. It is found that the adiabatic intrinsic responses are evidently superior to those without thermal consideration. The analysis results indicate that inclusion of thermal. effects is necessary to acquire accurate intrinsic responses of semiconductor lasers. (C) 2008 Wiley Periodicals, Inc.
Measurement of small-signal and large-signal responses of packaged laser modules at high temperature
Resumo:
In this paper, the pulsed injection method is extended to measure the chip temperature of various packaged laser modules, such as the DFB laser modules, the FP laser modules, and the EML laser modules. An optimal injection condition is obtained by investigating the dependence of the lasing wavelength on the width and period of the injection pulse in a relatively wide temperature range. The small-signal frequency responses and large-signal performances of packaged laser modules at different chip temperature are measured. The adiabatic small-signal modulation characteristics of packaged LD are first extracted. In the large-signal measurement, the effects of chip temperature, bias current and driving signal on the performances of the laser modules are discussed. It has been found that the large-signal performances of the EML modules depend on the different red-shift speeds of the DFB and EAM sections as chip temperature varying, and the optimal characteristics may be achieved at higher temperature.
Resumo:
An improved optical self-heterodyne method utilizing a distributed Bragg reflector (DBR) tunable laser and an optical fiber ring interferometer is presented in this paper. The interference efficiency can be increased by 7 dB compared with the scheme using the conventional Mach-Zehnder interferometer. The unsteady process that the beating frequency experiences in each tuning period is investigated. According to the measurement results, the wavelength and optical power of the tunable laser will be steady when the square-wave frequency is lower than 300 kHz. It has been shown that when a square-wave voltage is applied to the phase section of the tunable laser, the laser linewidths vary in a wide range, and are much larger than that under dc voltage tuning. The errors caused by the variations in the linewidth of the beat signal and optical power can be eliminated using the proposed calibration procedures, and the measurement accuracy can, therefore, be significantly improved. Experiments show that the frequency responses obtained using our method agree well with the data provided by the manufacturer, and the improved optical self-heterodyne method is as accurate as the intensity noise technique.
Resumo:
In order to understand the relationship between phospholipid molecular structures and their olfactory responses to odorants, we designed and synthesized four phosphatidylcholine analogues with different long hydrocarbon (CH) chains and selected three natural phospholipids with different head-groups. By using interdigital electrodes (IEs) as olfactory sensors (OSs), we measured the responses of the Ifs coated with these seven different lipid membranes to four alcohol vapors in a gas flow system. The Ifs voltage changes were recorded and the voltage-relative saturate vapor pressure (V-P/P degrees) curves were also plotted. It was found that with a methyl (-CH3) placed at the C-8 position in the 18-carbon chain, the olfactory responses could be improved about ten times and with conjugated double bonds (C=C) in the long chains, the sensitivity could be increased by 3 similar to 4 orders of magnitude. As to head-groups, choline is preferred over ethanolamine and serine in phospholipid structures in terms of high olfactory sensitivity: These results are expected to be useful in further designing and manufacturing lipid-mimicking OSs. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The characteristic features of the absorption and photoluminescence spectra of ZnSe quantum dots (QDs) inside a silica matrix derived from a sol-gel method were studied at room temperature. Compared with the bulk materials, the absorption edges of ZnSe QDs in silica gel glass were shifted to higher energies and the spectra exhibited the discrete excitonic features due to the quantum confinement effects. Besides the band-edge emission, photoluminescence at ultraviolet excitation also showed the emissions related to the higher excitonic states. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Many B cell epitopes within p24 of human immunodeficiency virus type 1 (HIV-1) were identified, while most of them were determined by using murine monoclonal antibodies reacting with overlapping peptides of p24. Therefore these epitopes may not represent the actual epitopes recognized by the HIV-1 infected individuals. In the present study, immune responses of 67 HIV-1 positive sera from Yunnan Province, China to five peptides on p24 of HIV-1 and one of HIV-2 were analyzed. All of 67 sera did not recognize peptide GA-12 on HIV-1 and peptide AG-23 on HIV-2, which indicated that GA-12 was not human B cell epitope and AG-23 did not cross-react with HIV-1 positive serum. Except 13 sera (19.4%), all remaining sera did not recognize peptides NI-15, DR-16, DC-22 and PS-18, which indicated that these four peptides represented B cell linear epitopes of HIV-1 p24 in some HIV-1 infected individuals but not the immuno-dominant epitopes in most individuals. Cellular & Molecular Immunology. 2005;2(4):289-293.