859 resultados para Data-driven energy e ciency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motion response of marine structures in waves can be studied using finite-dimensional linear-time-invariant approximating models. These models, obtained using system identification with data computed by hydrodynamic codes, find application in offshore training simulators, hardware-in-the-loop simulators for positioning control testing, and also in initial designs of wave-energy conversion devices. Different proposals have appeared in the literature to address the identification problem in both time and frequency domains, and recent work has highlighted the superiority of the frequency-domain methods. This paper summarises practical frequency-domain estimation algorithms that use constraints on model structure and parameters to refine the search of approximating parametric models. Practical issues associated with the identification are discussed, including the influence of radiation model accuracy in force-to-motion models, which are usually the ultimate modelling objective. The illustration examples in the paper are obtained using a freely available MATLAB toolbox developed by the authors, which implements the estimation algorithms described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Accelerometers have become one of the most common methods of measuring physical activity (PA). Thus, validity of accelerometer data reduction approaches remains an important research area. Yet, few studies directly compare data reduction approaches and other PA measures in free-living samples. Objective To compare PA estimates provided by 3 accelerometer data reduction approaches, steps, and 2 self-reported estimates: Crouter's 2-regression model, Crouter's refined 2-regression model, the weighted cut-point method adopted in the National Health and Nutrition Examination Survey (NHANES; 2003-2004 and 2005-2006 cycles), steps, IPAQ, and 7-day PA recall. Methods A worksite sample (N = 87) completed online-surveys and wore ActiGraph GT1M accelerometers and pedometers (SW-200) during waking hours for 7 consecutive days. Daily time spent in sedentary, light, moderate, and vigorous intensity activity and percentage of participants meeting PA recommendations were calculated and compared. Results Crouter's 2-regression (161.8 +/- 52.3 minutes/day) and refined 2-regression (137.6 +/- 40.3 minutes/day) models provided significantly higher estimates of moderate and vigorous PA and proportions of those meeting PA recommendations (91% and 92%, respectively) as compared with the NHANES weighted cut-point method (39.5 +/- 20.2 minutes/day, 18%). Differences between other measures were also significant. Conclusions When comparing 3 accelerometer cut-point methods, steps, and self-report measures, estimates of PA participation vary substantially.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is currently some debate about whether the energy expenditure of domestic tasks is sufficient to confer health benefits. The aim of this study was therefore to measure the energy cost of five activities commonly undertaken by mothers of young children. Seven women with at least one child younger than five years of age spent 15 minutes in each of the following activities: sitting quietly, vacuum cleaning, washing windows, walking at moderate pace (approx 5km/hour), walking with a stroller and grocery shopping in a super-market. Each of the six 'trials' was completed on the same day, in random order. A carefully calibrated portable gas analyser was used to measure oxygen uptake during each activity, and data were converted to units of energy expenditure (METS). Vacuum cleaning, washing windows and walking with and without a stroller were found to be 'moderate intensity activities' (3 to 6 METs), but supermarket shopping did not reach this criterion. The MET values for these activities were similar to those reported in the Compendium of Physical Activities (Ainsworth et al., 2000). However, the energy expenditures of walking, both with and without a stroller, were higher than those reported in the Compendium. The findings suggest that some of the tasks associated with domestic caring duties are conducted at an intensity which is sufficient to confer some health benefit. Such benefits will only accrue however if the daily duration of these activities is sufficient to meet current guidelines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose This Study evaluated the predictive validity of three previously published ActiGraph energy expenditure (EE) prediction equations developed for children and adolescents. Methods A total of 45 healthy children and adolescents (mean age: 13.7 +/- 2.6 yr) completed four 5-min activity trials (normal walking. brisk walking, easy running, and fast running) in ail indoor exercise facility. During each trial, participants were all ActiGraph accelerometer oil the right hip. EE was monitored breath by breath using the Cosmed K4b(2) portable indirect calorimetry system. Differences and associations between measured and predicted EE were assessed using dependent t-tests and Pearson correlations, respectively. Classification accuracy was assessed using percent agreement, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve. Results None of the equations accurately predicted mean energy expenditure during each of the four activity trials. Each equation, however, accurately predicted mean EE in at least one activity trial. The Puyau equation accurately predicted EE during slow walking. The Trost equation accurately predicted EE during slow running. The Freedson equation accurately predicted EE during fast running. None of the three equations accurately predicted EE during brisk walking. The equations exhibited fair to excellent classification accuracy with respect to activity intensity. with the Trost equation exhibiting the highest classification accuracy and the Puyau equation exhibiting the lowest. Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overground walking and running. The equations maybe, however, for estimating participation in moderate and vigorous activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. Purpose: The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. Methods: One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous intensity games or sports. During each trial, participants wore an ActiGraph GTIM on the right hip, and (V) Over dotO(2) was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square en-or (RMSE). Results: As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. Conclusions: ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose The aim of this study was to assess the predictive validity of three accelerometer prediction equations (Freedson et aL, 1997; Trost et aL, 1998; Puyau et al., 2002) for energy expenditure (EE) during overland walking and running in children and adolescents. Methods 45 healthy children and adolescents aged 10-18 completed the following protocol, each task 5-mins in duration, with a 5-min rest period in between; walking normally; walking briskly; running easily and running fast. During each task participants wore MTI (WAM 7164) Actigraphs on the left and right hips. VO2 was monitored breath by breath using the Cosmed K4b2 portable indirect calorimetry system. For each prediction equation, difference scores were calculated as EE measured minus EE predicted. The percentage of 1-min epochs correctly categorized as light (<3 METs), moderate (3-5.9 METs), and vigorous (≥6 METS) was also calculated. Results The Freedson and Trost equations consistently overestimated MET level. The level of overestimation was statistically significant across all tasks for the Freedson equation, and was significant for only the walking tasks for the Trost equation. The Puyau equation consistently underestimated AEE with the exception of the walking normally task. In terms of categorisation, the Freedson equation (72.8% agreement) demonstrated better agreement than the Puyau (60.6%). Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overland walking and running. However, the cut points generated by these equations maybe useful for classifying activity as either, light, moderate, or vigorous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combining human-computer interaction and urban informatics, this design research developed and tested novel interfaces offering users real-time feedback on their paper and energy consumption. Findings from deploying these interfaces in both domestic and office environments in Australia, the UK, and Ireland, will innovate future generations of resource monitoring technologies. The study draws conclusions with implications for government policy, the energy industry, and sustainability researchers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the chemical synthesis of the arrays of silicon oxide nanodots and their self-organization on the surface via physical processes triggered by surface charges. The method based on chemically active oxygen plasma leads to the rearrangement of nanostructures and eventually to the formation of groups of nanodots. This behavior is explained in terms of the effect of electric field on the kinetics of surface processes. The direct measurements of the electric charges on the surface demonstrate that the charge correlates with the density and arrangement of nanodots within the array. Extensive numerical simulations support the proposed mechanism and prove a critical role of the electric charges in the self-organization. This simple and environment-friendly self-guided process could be used in the chemical synthesis of large arrays of nanodots on semiconducting surfaces for a variety of applications in catalysis, energy conversion and storage, photochemistry, environmental and biosensing, and several others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma nanoscience is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid-state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. This paper examines the origin, progress and future perspectives of this research field driven by the global scientific and societal challenges. The future potential of plasma nanoscience to remain a highly topical area in the global research and technological agenda in the age of fundamental-level control for a sustainable future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to controlling energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for plasma nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health-friendly features of plasma-based nanotech are emphasized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research proposes the development of interfaces to support collaborative, community-driven inquiry into data, which we refer to as Participatory Data Analytics. Since the investigation is led by local communities, it is not possible to anticipate which data will be relevant and what questions are going to be asked. Therefore, users have to be able to construct and tailor visualisations to their own needs. The poster presents early work towards defining a suitable compositional model, which will allow users to mix, match, and manipulate data sets to obtain visual representations with little-to-no programming knowledge. Following a user-centred design process, we are subsequently planning to identify appropriate interaction techniques and metaphors for generating such visual specifications on wall-sized, multi-touch displays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study adopts the premise that innovation capability underpins a service firm's value creation ability and that management style, employee behaviors and marketing underpin its innovation capability. This study examines the role of managers and employees in the creation and delivery of superior value to customers via the firm's innovation capability. To test this premise the current study examines the role of transformational leadership (TFL) as an aspect of the service firm's management style in creating and delivering value to customers through its services. This study adopts a multi-level study, collecting data from managers, employees and customers of service firms in a Southeast-Asian country, Cambodia. The results show that a service firm's innovation capability has a positive effect on the firm's value offering (VO), the VO has a positive relationship with customer perceived value-in use (PVI), and PVI has a positive relationship with firm performance. This study also finds moderating effects of TFL on the relationship between service innovation capability and VO, and of service marketing capability on the relationship between VO and PVI respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with how a localised and energy-constrained robot can maximise its time in the field by taking paths and tours that minimise its energy expenditure. A significant component of a robot's energy is expended on mobility and is a function of terrain traversability. We estimate traversability online from data sensed by the robot as it moves, and use this to generate maps, explore and ultimately converge on minimum energy tours of the environment. We provide results of detailed simulations and parameter studies that show the efficacy of this approach for a robot moving over terrain with unknown traversability as well as a number of a priori unknown hard obstacles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of vapor layers around an electrode immersed in a conducting liquid prior to generation of a plasma discharge is studied using numerical simulations. This study quantifies and explains the effects of the electrode geometry and applied voltage pulses, as well as the electrical and thermal properties of the liquids on the temporal dynamics of the pre-breakdown conditions in the vapor layer. This model agrees well with experimental data, in particular, the time needed to reach the electrical breakdown threshold. Because the time needed for discharge ignition can be accurately predicted from the model, the parameters such as the pulse shape, voltage, and electrode configuration can be optimized under different liquid conditions, which facilitates a faster and more energy-efficient plasma generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent discussions of energy security and climate change have attracted significant attention to clean energy. We hypothesize that rising prices of conventional energy and/or placement of a price on carbon emissions would encourage investments in clean energy firms. The data from three clean energy indices show that oil prices and technology stock prices separately affect the stock prices of clean energy firms. However, the data fail to demonstrate a significant relationship between carbon prices and the stock prices of the firms.