962 resultados para DNA-Directed DNA Polymerase


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several late gene expression factors (Lefs) have been implicated in fostering high levels of transcription from the very late gene promoters of polyhedrin and p10 from baculoviruses. We cloned and characterized from Bombyx mori nuclear polyhedrosis virus a late gene expression factor (Bmlef2) that encodes a 209-amino-acid protein harboring a Cys-rich C-terminal domain. The temporal transcription profiles of lef2 revealed a 1.2-kb transcript in both delayed early and late periods after virus infection. Transcription start site mapping identified the presence of an aphidicolin-sensitive late transcript arising from a TAAG motif located at -352 nucleotides and an aphidicolin-insensitive early transcript originating from a TTGT motif located 35 nucleotides downstream to a TATA box at -312 nucleotides, with respect to the +1 ATG of lef2. BmLef2 trans-activated very late gene expression from both polyhedrin and p10 promoters in transient expression assays. Internal deletion of the Cys-rich domain from the C-terminal region abolished the transcriptional activation. Inactivation of Lef2 synthesis by antisense lef2 transcripts drastically reduced the very late gene transcription but showed little effect on the expression from immediate early promoter. Decrease in viral DNA synthesis and a reduction in virus titer were observed only when antisense lef2 was expressed under the immediate early (ie-1) promoter. Furthermore, the antisense experiments suggested that lef2 plays a direct role in very late gene transcription.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A copper(II) complex of dipyridophenazine, viz., [Cu(dppz)(2)(H2O)](ClO4)(2) (I), has been prepared and structurally characterized by X-ray crystallography. The crystal structure of the complex shows a five-coordinate structure in which two N,N-donor dipyridophenazine (dppz) and one aqua ligand bind to the copper(II) center giving Cu-O and Cu-N bond distances in the range of 1.981(6) to 2.043(6) angstrom. The ESI-MS spectrum of 1 in MeCN shows a peak at m/z value of 313 (100%) indicating the dissociation of the aqua ligand in the solution phase. The complex is one-electron paramagnetic (mu(eff), 1.86 mu(B)). It displays a quasi-reversible Cu(II)/Cu(I) redox process at 0.096 V. The complex is an avid binder to CT DNA giving a binding constant value of 3.5 x 10(5) M-1. It shows significant hydrolytic cleavage of supercoiled pUC19 DNA in dark ill the absence of any external agents. The complex exhibits chemical nuclease activity oil treatment with 3-mercaptopropionic acid as a reducing agent forming hydroxyl radicals. Complex 1 is a model synthetic nuclease and hydrolase showing both modes of DNA cleavage under different reaction conditions. The DNA cleavage activity of 1 is significantly better than its phen analogue but similar to that of the bis-dpq complex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ferrocene-conjugated ternary copper(II) complexes [Cu(L)(B)](ClO4)(2), where L is FcCH(2)N(CH2Py)(2) (Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5)) and B is a phenanthroline base, viz., 2,2'-bipyridine (bpy, 1), 1, 10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4), have been synthesized and characterized by various spectroscopic and analytical techniques. The bpy complex 1, as its hexafluorophosphate salt, has been structurally characterized by X-ray crystallography. The molecular structure shows the copper(II) center having an essentially square-pyramidal coordination geometry in which L with a pendant ferrocenyl (Fc) moiety and bpy show respective tridentate and bidentate modes of binding to the metal center. The complexes are redox active, showing a reversible cyclic voltammetric response of the Fc(+)-Fc couple near 0.5 V vs SCE and a quasi-reversible Cu(II)-Cu(I) couple near 0.0 V. Complexes 2-4 show binding affinity to calf thymus (CT) DNA, giving binding constant (K-b) values in the range of 4.2 x 10(4) to 2.5 x 10(5) M-1. Thermal denaturation and viscometric titration data suggest groove binding and/or a partial intercalative mode of binding of the complexes to CT DNA. The complexes show good binding propensity to the bovine serum albumin (BSA) protein, giving K-BSA values of similar to 10(4) M-1 for the bpy and phen complexes and similar to 10(5) M-1 for the dpq and dppz complexes. Complexes 2-4 exhibit efficient chemical nuclease activity in the presence of 3-mercapto-propionic acid (MPA) as a reducing agent or hydrogen peroxide (H2O2) as an oxidizing agent. Mechanistic studies reveal formation of hydroxyl radicals as the reactive species. The dpq and dppz complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to visible light of different wavelengths including red light using an argon-krypton mixed gas ion laser. Mechanistic investigations using various inhibitors reveal the fort-nation of hydroxyl radicals in the DNA photocleavage reactions. The dppz complex 4, which shows efficient photoioduced BSA cleavage activity, is a potent multifunctional model nuclease and protease in the chemistry of photodynamic therapy (PDT) of cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ternary L-glutamine (L-gln) copper(II) complexes [Cu(L-gln)(B)(H2O)](X) (B = 2,2'-bipyridine (bpy), X = 0.5SO(4)(2-), 1; B = 1,10-phenanthroline (phen), X = ClO4-, 2) and [Cu(L-gln)(dpq)(ClO4)] (3) (dpq, dipyridoquinoxaline) are prepared and characterized by physicochemical methods. The DNA binding and cleavage activity of the complexes have been studied. Complexes 1-3 are structurally characterized by X-ray crystallography. The complexes show distorted square pyramidal (4+1) CuN3O2 coordination geometry in which the N,O-donor amino acid and the N, N-donor heterocyclic base bind at the basal plane with a H2O or perchlorate as the axial ligand. The crystal structures of the complexes exhibit chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The complexes display a d-d electronic band in the range of 610-630 nm in aqueous-dimethylformamide (DMF) solution (9:1 v/v). The quasireversible cyclic voltammetric response observed near -0.1 V versus SCE in DMF-TBAP is assignable to the Cu(II)/Cu(I) couple. The binding affinity of the complexes to calf thymus (CT) DNA follows the order: 3 (dpq) > 2 (phen) >> 1 (bpy). Complexes 2 and 3 show DNA cleavage activity in dark in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent via a mechanistic pathway forming hydroxyl radical as the reactive species. The dpq complex 3 shows efficient photoinduced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency of the DNA minor groove binding complexes follows the order:3 > 2 >> 1. The dpq complex exhibits photocleavage of DNA on irradiation with visible light of 647.1 nm. Mechanistic data on the photo-induced DNA cleavage reactions reveal the involvement of singlet oxygen (O-1(2)) as the reactive species in a type-II pathway. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA obtained from a human sputum isolate of Mycobacterium tuberculosis, NTI-64719, which showed extensive dissemination in the guinea pig model resulting in a high score for virulence was used to construct an expression library in the lambda ZAP vector. The size of DNA inserts in the library ranged from 1 to 3 kb, and recombinants represented 60% of the total plaques obtained. When probed with pooled serum from chronically infected tuberculosis patients, the library yielded 176 recombinants with a range of signal intensities. Among these, 93 recombinants were classified into 12 groups on the basis of DNA hybridization experiments, The polypeptides synthesized by the recombinants were predominantly LacZ fusion proteins, Serum obtained from patients who were clinically diagnosed to be in the early phase of M. tuberculosis infection was used to probe the 176 recombinants obtained. interestingly, some recombinants that gave very strong signals in the original screen did not react with early-phase serum; conversely, others whose signals were extremely weak in the original screen gave very intense signals with serum from recently infected patients, This indicates the differential nature of either the expression of these antigens or the immune response elicited by them as a function of disease progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new water-soluble, salen [salen = bis(salicylidene) ethylenediamine]-based ligand, 3 was developed. Two of the metal complexes of this ligand, i.e., 3a, [Mn(III)] and 3b, [Ni(II)], in the presence of cooxidant magnesium monoperoxyphthalate (MMPP) cleaved plasmid DNA pTZ19R efficiently and rapidly at a concentration similar to 1 mu M. In contrast, under comparable conditions, other metal complexes 3c, [Cu(II)] or 3d, [Cr(III)] could not induce any significant DNA nicking. The findings with Ni(II) complex suggest that the DNA cleavage processes can be modulated by the disposition of charges around the ligand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At low temperature (below its freezing/melting temperature), liquid water under confinement is known to exhibit anomalous dynamical features. Here we study structure and dynamics of water in the grooves of a long DNA duplex using molecular dynamics simulations with TIP5P potential at low temperature. We find signatures of a dynamical transition in both translational and orientational dynamics of water molecules in both the major and the minor grooves of a DNA duplex. The transition occurs at a slightly higher temperature (TGL ≈ 255 K) than the temperature at which the bulk water is found to undergo a dynamical transition, which for the TIP5P potential is at 247 K. Groove water, however, exhibits markedly different temperature dependence of its properties from the bulk. Entropy calculations reveal that the minor groove water is ordered even at room temperature, and the transition at T ≈ 255 K can be characterized as a strong-to-strong dynamical transition. Confinement of water in the grooves of DNA favors the formation of a low density four-coordinated state (as a consequence of enthalpy−entropy balance) that makes the liquid−liquid transition stronger. The low temperature water is characterized by pronounced tetrahedral order, as manifested in the sharp rise near 109° in the O−O−O angle distribution. We find that the Adams−Gibbs relation between configurational entropy and translational diffusion holds quite well when the two quantities are plotted together in a master plot for different region of aqueous DNA duplex (bulk, major, and minor grooves) at different temperatures. The activation energy for the transfer of water molecules between different regions of DNA is found to be weakly dependent on temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Copper(II) complexes [Cu(L-arg)(2)](NO3)(2) (1) and [Cu(L-arg)(B)Cl]Cl (2-5), where B is a heterocyclic base, namely, 2,2'-bipyridine (bpy, 2), 1,10-phenanthroline (phen, 3), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 4), and dipyrido[3,2-a:2',3'-c)phenazine (dppz, 5), are prepared and their DNA binding and photoinduced DNA cleavage activity studied. Ternary complex 3, structurally characterized using X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor L-arginine and N,N-donor 1,10-phenanthroline form the basal plane with one chloride at the elongated axial site. The complex has a pendant cationic guanidinium moiety. The one-electron paramagnetic complexes display a metal-centered d-d band in the range of 590-690 nm in aqueous DMF They show quasireversible cyclic voltammetric response due to the Cu(II)/Cu(I) couple in the range of -0.1 to -0.3 V versus a saturated calomel electrode in a DMF-Tris HCl buffer (pH 7.2). The DNA binding propensity of the complexes is studied using various techniques. Copper(II) bis-arginate 1 mimics the minor groove binder netropsin by showing preferential binding to the AT-rich sequence of double-strand (ds) DNA. DNA binding study using calf thymus DNA gives an order: 5 (L-arg-dppz) >= 1 (biS-L-arg) > 4 (L-arg-dpq) > 3 (L-arg-phen) >> 2 (L-arg-bpy). Molecular docking calculations reveal that the complexes bind through extensive hydrogen bonding and electrostatic interactions with ds-DNA. The complexes cleave supercoiled pUC19 DNA in the presence of 3-mercaptopropionic acid as a reducing agent forming hydroxyl ((OH)-O-center dot) radicals. The complexes show oxidative photoinduced DNA cleavage activity in UV-A light of 365 nm and red light of 647.1 nm (Ar-Kr mixed-gas-ion laser) in a metal-assisted photoexcitation process forming singlet oxygen (O-1(2)) species in a type-II pathway. All of the complexes, barring complex 2, show efficient DNA photocleavage activity. Complexes 4 and 5 exhibit significant double-strand breaks of DNA in red light of 647.1 nm due to the presence of two photosensitizers, namely, L-arginine and dpq or dppz in the molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of studies in yeast have shown that DNA topoisomerase TI is essential for chromosome condensation and disjunction during mitosis at the metaphase/anaphase transition and meiosis I. Accordingly, kinetic and mechanistic studies have implied a role for topoisomerase rr in chromosome disjunction. As a step toward understanding the nature and role of topoisomerase II in a mammalian germline in vivo, we have purified topoisomerase II from rat testis to homogeneity and ascertained several of its catalytic activities in conjunction with that of the purified enzyme from liver. The purified enzymes appeared to be monomers under denaturing conditions; however, they differed in their relative molecular mass. Topoisomerase II from testis and liver have apparent molecular masses of 150 +/- 10 kDa and 160 +/- 10 kDa, respectively. The native molecular mass of testis topoisomerase II as assayed by immunoblot analysis of cell-foe extracts, prepared in the presence of SDS and a number of protease inhibitors, corroborated with the size of the purified enzyme. Both enzymes are able to promote decatenation and relax supercoiled DNA substrates in an ATP and Mg2+-dependent manner. However, quantitative comparison of catalytic properties of topoisomerase II from testis with that of the enzyme from liver displayed significant differences in their efficiencies. Optimal pH values for testis enzyme are 6.5 to 8.5 while they are 6 to 7.5 for the liver enzyme. Intriguingly, the relaxation activity of liver topoisomerase II was inhibited by potassium glutamate at 1 M, whereas testis enzyme required about half its concentration. These findings argue that topoisomerase II from rat testis is structurally distinct from that of its somatic form and the functional differences between the two enzymes parallels with the physiological environment that is unique to these two tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ferrocene-appended ternary copper(H) complexes of phenanthroline bases having CuN3OS coordination with an axial Cu-S bond derived from L-methionine reduced Schiff base shows red light induced oxidative DNA cleavage activity following a hydroxyl radical pathway. The dipyridophenazine complex, in addition, displays photoinduced oxidative cleavage of bovine serum albumin protein in UV-A light.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to investigate the effects of arsenic trioxide (As2O3) on the mitochondrial DNA (mtDNA) of acute promyelocytic leukemia (APL) cells. The NB4 cell line was treated with 2.0 μmol/L As2O3in vitro, and the primary APL cells were treated with 2.0 μmol/L As2O3in vitro and 0.16 mg kg-1 d-1 As2O3in vivo. The mitochondrial DNA of all the cells above was amplified by PCR, directly sequenced and analyzed by Sequence Navigatore and Factura software. The apoptosis rates were assayed by flow cytometry. Mitochondrial DNA mutation in the D-loop region was found in NB4 and APL cells before As2O3 use, but the mutation spots were remarkably increased after As2O3 treatment, which was positively correlated to the rates of cellular apoptosis, the correlation coefficient: rNB4-As2O3=0.973818, and rAPL-As2O3=0.934703. The mutation types include transition, transversion, codon insertion or deletion, and the mutation spots in all samples were not constant and regular. It is revealed that As2O3 aggravates mtDNA mutation in the D-loop region of acute promyelocytic leukemia cells both in vitro and in vivo. Mitochondrial DNA might be one of the targets of As2O3 in APL treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

From X-ray diffraction studies it is generally believed that B-DNA has the structural parameters n = 10 and h = 3.4 Å. However, for the first time we report that polymorphism in the B-form can be observed in DNA fibres. This was achieved by the precise control of salt and humidity in fibres and by the application of the precession method of X-ray diffraction to DNA fibres. The significant result obtained is that n = 10 is not observed for crystalline fibre patterns. In fact, n = 10 and h = 3.4 Å are not found to occur simultaneously. Instead, a range of values, n = 9.6–10.0 and h = 3.35 Å–3.41 Å is observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated structural transitions in Poly(dG-dC) and Poly(dG-Me5dC) in order to understand the exact role of cations in stabilizing left-handed helical structures in specific sequences andthe biological role, if any, of these structures. From a novel temperature dependent transition it has been shown that a minor fluctuation in Na+ concentration at ambient temperature can bring about Β to Ζ transition. Forthe first time, wehave observed a novel double transition in poly(dG-Me5dC) as the Na+ concentration is gradually increased. This suggests that a minor fluctuation in Na+ concentration in conjunction with methylation may transform small stretches of CG sequences from one conformational state to another. These stretches could probably serve as sites for regulation. Supercoiled formV DNA reconstituted from pBR322 and pßG plasmids have been studied as model systems, in order to understand the nature and role of left-handed helical conformation in natural sequences. A large portion of DNA in form V, obtained by reannealing the two complementary singlestranded circles is forced to adopt left-handed double helical structure due to topological constraints (Lk = 0). Binding studies with Z-DNA specific antibody and spectroscopic studies confirm the presence of left-handed Z-structure in the pßG and pßR322 form V DNA. Cobalt hexamine chloride, which induces Z-form in Poly(dG-dC) stabilizes the Z-conformation in form V DNA even in the non-alternating purine-pyrimidine sequences. A reverse effect is observed with ethidium bromide. Interestingly, both topoisomerase I and II (from wheat germ) act effectively on form V DNA to give rise to a species having an electrophoretic mobility on agarose gel similar to that of open circular (form II) DNA. Whether this molecule is formed as a result of the left-handed helical segments of form V DNA undergoing a transition to the right-handed B-form during the topoisomerase action remains to be solved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The conformational flexibility inherent in the polynucleotide chain plays an important role in deciding its three-dimensonal structure and enables it to undergo structural transitions in order to fulfil all its functions. Following certain stereochemical guidelines, both right and left handed double-helical models have been built in our laboratory and they are in reasonably good agreement with the fibre patterns for various polymorphous forms of DNA. Recently, nuclear magnetic resonance spectroscopy has become an important technique for studying the solution conformation and polymorphism of nucleic acids. Several workers have used 1H nuclear magnetic resonance nuclear Overhauser enhancement measurements to estimate the interproton distances for the various DNA oligomers and compared them with the interproton distances for particular models of A and Β form DNA. In some cases the solution conformation does not seem to fit either of these models. We have been studying various models for DNA with a view to exploring the full conformational space allowed for nucleic acid polymers. In this paper, the interproton distances calculated for the different stereochemically feasible models of DNA are presented and they are compared and correlated against those obtained from 1Η nuclear magnetic resonance nuclear Overhauser enhancement measurements of various nucleic acid oligomers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is shown that left-handed duplexes are possible for A, B, and D forms of DNA. These duplexes are stereochemically satisfactory and are consistent with the observed x-ray intensity data. On scrutiny the refined right-handed models of B and D DNA by Arnott and coworkers are found to be stereochemically unacceptable. It was possible to formulate a stereochemical guideline for molecular model building based on theory and analysis of single-crystal structure data of dinucleoside monophosphate and higher oligomers. This led to both right- and left-handed DNA duplexes. The right-handed B and D DNA duplexes so obtained are stereochemically superior to earlier models and agree well with the observed x-ray intensity data. The observation that DNA can exist in either handedness for all the polymorphous forms of DNA at once explained A in equilibrium B and B in equilibrium D transitions. Hence it is confirmed that polymorphism of DNA is a reflection on the conformational flexibility inherent in DNA, the same cause that ultimately allows DNA in either handedness. The possibility of various types of right- and left-handed duplexes generated by using dinucleoside monophosphate and trinucleoside diphosphate as repeating units resulted in a variety of models, called RL models. All these models have alternating right and left helical segments and inverted stacking at the bend region as suggested by us earlier. It turns out that the B-Z DNA model of Wang et al. is only an example of RL models.