705 resultados para DISPLACEMENTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole body vibration (WBV) aims to mechanically activate muscles by eliciting stretch reflexes. Mechanical vibrations are usually transmitted to the patient body standing on a oscillating plate. WBV is now more and more utilized not only for fitness but also in physical therapy, rehabilitation and in sport medicine. Effects depend on intensity, direction and frequency of vibration; however, the training frequency is one of the most important factors involved. A preliminary vibratory session can be dedicated to find the best vibration frequency for each subject by varying, stepwise, the stimulation frequency and analyzing the resulting EMG activity. This study concentrates on the analysis of muscle motion in response to a vibration frequency sweep, while subjects held two different postures. The frequency of a vibrating platform was increased linearly from 10 to 60 Hz in 26 s, while platform and single muscles (Rectus Femoris, Biceps Femoris - long head and Gastrocnemius Lateralis) motions were monitored using tiny, lightweight three-axial MEMS accelerometers. Displacements were estimated integrating twice the acceleration data after gravity contribution removal. Mechanical frequency response (amplitude and phase) of the mechanical chains ending at the single muscles was characterized. Results revealed a mechanical resonant-like behavior at some muscles, very similar to a second-order system in the frequency interval explored; resonance frequencies and dumping factors depended on subject and its positioning onto the vibrating platform. Stimulation at the resonant frequency maximizes muscle lengthening, and in turn muscle spindle solicitation, which produce muscle activation. © 2009 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements. © 2013 Paolo Bifulco et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1mm for displacements parallel to the fluoroscopic plane, and of order of 10mm for the orthogonal displacement. © 2010 P. Bifulco et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to highlight the relationship between muscle motion, generated by whole body vibration, and the correspondent electromyographic (EMG) activity and to suggest a new method to customize the stimulation frequency. Simultaneous recordings of EMG and tri-axial accelerations of quadriceps rectus femoris from fifteen subjects undergoing vibration treatments were collected. Vibrations were delivered via a sinusoidal oscillating platform at different frequencies (10-45 Hz). Muscle motion was estimated by processing the accelerometer data. Large EMG motion artifacts were removed using sharp notch filters centred at the vibration frequency and its superior harmonics. EMG-RMS values were computed and analyzed before and after artifact suppression to assess muscular activity. Muscles acceleration amplitude increased with frequency. Muscle displacements revealed a mechanical resonant-like behaviour of the muscle. Resonance frequencies and dumping factors depended on subject. Moreover, RMS of artifact-free EMG was found well correlated (R 2 = 0.82) to the actual muscle displacement, while the maximum of the EMG response was found related to the mechanical resonance frequency of muscle. Results showed that maximum muscular activity was found in correspondence to the mechanical resonance of the muscle itself. Assuming the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization (i.e. to choose the best stimulation frequency) could be obtained by simply monitoring local acceleration (resonance), leading to a more effective muscle stimulation. Motion artifact produced an overestimation of muscle activity, therefore its removal was essential. © 2009 IPEM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to contribute to the analysis and characterization of training with whole body vibration (WBV) and the resultant neuromuscular response. WBV aims to mechanically activate muscle by eliciting stretch reflexes. Generally, surface electromyography is utilized to assess muscular response elicited by vibrations. However, EMG analysis could potentially bring to erroneous conclusions if not accurately filtered. Tiny and lightweight MEMS accelerometers were found helpful in monitoring muscle motion. Displacements were estimated integrating twice the acceleration data after gravity and small postural subject adjustments contribution removal. Results showed the relevant presence of motion artifacts on EMG recordings, the high correlation between muscle motion and EMG activity and how resonance frequencies and dumping factors depended on subject and his positioning onto the vibrating platform. Stimulations at the resonant frequency maximize muscles lengthening and in turn, muscle spindle solicitation , which may produce more muscle activation. Local mechanical stimulus characterization (Le, muscle motion analysis) could be meaningful in discovering proper muscle stimulation and may contribute to suggest appropriate and effective WBV exercise protocols. ©2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibration treatment by oscillating platforms is more and more employed in the fields of exercise physiology and bone research. The rationale of this treatment is based on the neuromuscular system response elicited by vibration loads. surface Electromyography (EMG) is largely utilized to assess muscular response elicited by vibrations and Root Mean Square of the electromyography signals is often used as a concise quantitative index of muscle activity; in general, EMG envelope or RMS is expected to increase during vibration. However, it is well known that during surface bio-potential recording, motion artifacts may arise from relative motion between electrodes and skin and between skin layers. Also the only skin stretch, modifying the internal charge distribution, results in a variation of electrode potential. The aim of this study is to highlight the movements of muscles, and the succeeding relevance of motion artifacts on electrodes, in subjects undergoing vibration treatments. EMGs from quadriceps of fifteen subjects were recorded during vibration at different frequencies (15-40 Hz); Triaxial accelerometers were placed onto quadriceps, as close as possible to muscle belly, to monitor motion. The computed muscle belly displacements showed a peculiar behavior reflecting the mechanical properties of the structures involved. Motion artifact related to the impressed vibration have been recognized and related to movement of the soft tissues. In fact large artifacts are visible on EMGs and patellar electrodes recordings during vibration. Signals spectra also revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with accelerometers data. © 2008 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to highlight the relation between muscle motion and electromyographyc activity during whole body vibration. This treatment is accounted for eliciting a reflex muscle activity in response to vibratory stimulation. Simultaneous recordings from quadriceps Rectus Femoris EMG and 3D muscle accelerations on fifteen subjects undergoing vibration treatments were collected. In our study vibrations were delivered via a sinusoidal oscillating platform at different frequencies (10-45 Hz), with a constant amplitude. Muscle motion was estimated by processing accelerometer data. Displacements revealed a mechanical resonant-like behaviour of the muscle; resonance frequencies and dumping factors depended on subject. Large EMG motion artifacts were removed using sharp notch filters centred at the vibration frequency and its superior harmonics. RMS values of artifact-free EMG were found correlated to the actual muscle displacement. The results were in accordance to the hypothesis of a proprioceptive response during vibration treatment. Nevertheless, motion artifacts produced an overestimation of muscle activity, therefore its removal was essential. © 2009 Springer Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disasters are complex events characterized by damage to key infrastructure and population displacements into disaster shelters. Assessing the living environment in shelters during disasters is a crucial health security concern. Until now, jurisdictional knowledge and preparedness on those assessment methods, or deficiencies found in shelters is limited. A cross-sectional survey (STUSA survey) ascertained knowledge and preparedness for those assessments in all 50 states, DC, and 5 US territories. Descriptive analysis of overall knowledge and preparedness was performed. Fisher’s exact statistics analyzed differences between two groups: jurisdiction type and population size. Two logistic regression models analyzed earthquakes and hurricane risks as predictors of knowledge and preparedness. A convenience sample of state shelter assessments records (n=116) was analyzed to describe environmental health deficiencies found during selected events. Overall, 55 (98%) of jurisdictions responded (states and territories) and appeared to be knowledgeable of these assessments (states 92%, territories 100%, p = 1.000), and engaged in disaster planning with shelter partners (states 96%, territories 83%, p = 0.564). Few had shelter assessment procedures (states 53%, territories 50%, p = 1.000); or training in disaster shelter assessments (states 41%, 60% territories, p = 0.638). Knowledge or preparedness was not predicted by disaster risks, population size, and jurisdiction type in neither model. Knowledge: hurricane (Adjusted OR 0.69, 95% C.I. 0.06-7.88); earthquake (OR 0.82, 95% C.I. 0.17-4.06); and both risks (OR 1.44, 95% C.I. 0.24-8.63); preparedness model: hurricane (OR 1.91, 95% C.I. 0.06-20.69); earthquake (OR 0.47, 95% C.I. 0.7-3.17); and both risks (OR 0.50, 95% C.I. 0.06-3.94). Environmental health deficiencies documented in shelter assessments occurred mostly in: sanitation (30%); facility (17%); food (15%); and sleeping areas (12%); and during ice storms and tornadoes. More research is needed in the area of environmental health assessments of disaster shelters, particularly, in those areas that may provide better insight into the living environment of all shelter occupants and potential effects in disaster morbidity and mortality. Also, to evaluate the effectiveness and usefulness of these assessments methods and the data available on environmental health deficiencies in risk management to protect those at greater risk in shelter facilities during disasters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retaining walls design involves factors such as plastification, loading and unloading, pre-stressing, excessive displacements and earth and water thrust. Furthermore, the interaction between the retained soil and the structure is rather complex and hard to predict. Despite the advances in numerical simulation techniques and monitoring of forces and displacements with field instrumentation, design projects are still based on classical methods, whose simplifying assumptions may overestimate structural elements of the retaining wall. This dissertation involves a three-dimensional numerical study on the behavior of a retaining wall using the finite element method (FEM). The retaining wall structure is a contiguous bored pile wall with tie-back anchors. The numerical results were compared to data obtained from field instrumentation. The influence of the position of one or two layers of anchors and the effects of the construction of a slab bounded at the top of the retaining wall was evaluated. Furthermore, this study aimed at investigating the phenomenon of arching in the soil behind the wall. Arching was evaluated by analyzing the effects of pile spacing on horizontal stresses and displacements. Parametric analysis with one layers of anchors showed that the smallest horizontal displacements of the structure were achieved for between 0.3 and 0.5 times the excavation depth. Parametric analyses with two anchor layers showed that the smallest horizontal displacements were achieve for anchors positioned in depths of 0.4H and 0.7H. The construction of a slab at the top of the retaining wall decreased the horizontal displacements by 0.14% times the excavation depth as compared to analyses without the slab. With regard to the arching , analyzes showed an optimal range of spacing between the faces of the piles between 0.4 and 0.6 times the diameter of the pile

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavioral decisions of animals do not occur randomly, because behaviors are adjusted to ensure the survival and reproduction of the animal. In this research, I examined behavioral decisions in the foraging context of the ant Dinoponera quadriceps with regard to orientation, food avaliation and foraging dynamic to individual level. The study was conducted at the Laboratory of Behavioral Biology at UFRN and in an area of secondary Atlantic Forest in FLONA-ICMBio Nísia Floresta/RN. In all observations and experiments, ants were marked individually with an alphanumeric code label fixed on the thorax. In the first part of the study, I analyzed the orientation cues used by D. quadriceps. The tests were performed in a maze of 17 compartments. Each forager was tested for 10 min in three sessions for six different treatments. The treatments consisted of the presence or absence of odor and superior or frontal visual cues. The workers demonstrated that the presence of odor is indispensable and front visual cues are more effective than superior visual cues. In the second part, I investigated the discrimination of food, considering the parameters, size, weight and volume. In a 'cafeteria' experiment, I offered cylindrical pieces of food (mortadella) in a Petri dish, within an experimental arena 1m². Initially, the pieces were of four different sizes; in a second step, the pieces were of the same size but with different weight; in the last step, the pieces had the same weight but different volumes. The results showed the effect of the size and weight parameters for food choice. In the third part of the study, I evaluated the influence of the activity of active foragers on inactive ones. In this part, the colonies were observed in a natural environment. The observations took place on three consecutive days in 10 episodes, total of 30 days for each colony, 12 hours/day. On the first day, I registered the output and input of workers; on the second day, the most active ants on the first day were taken and given back at the end of the observations; on the third day, the observations were similar to the first day. As a result, the workers of D. quadriceps show autostimulation and they do not show social facilitation and the colony compensates the absence of the most active workers. Based on the stated, I conclude that workers of D. quadriceps use chemical, frontal and superior visual orientation cues during their displacements. They discriminate the chosen food by size and weight. The regulation of activity dynamics of foragers is by autostimulation, an active worker does not influence the activity of an inactive worker, the successful search previous is the stimulus to the successful worker itself to continue foraging activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The developed study proposes a new computer modeling efficient and easy to apply in usual project situations to evaluate the interaction between masonry panels and support structure. The proposed model simulates the behavior of the wall exclusively using frame finite elements, thus compounding an equivalent frame. The validation was performed in two ways: firstly, through the analysis of various panels of generic plans, comparing the results obtained from equivalent frame model with the ones from a reference model, which uses shell finite elements in discretization of the walls; and in a second step, comparing with the results of the experimental model of Rosenhaupt. The analyzes considered the linear elastic behavior for materials and consisted basically in the evaluation of vertical displacements and efforts in support beams, and tensions at the base of walls. Was also evaluated, from flat and threedimensional modeling of some walls from a real project, important aspects of the wall-beam interaction, e.g.: the presence of openings of doors and windows, arranged in any position; conditions of support and linking of beams; interference of moorings between walls; and consideration of wind action. The analysis of the achieved results demonstrated the efficiency of the proposed modeling, since they have very similar aspects in the distribution of stresses and efforts, always with intensities slightly larger than those of the reference and experimental models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discussion about rift evolution in the Brazilian Equatorial margin during the South America-Africa breakup in the Jurassic/Cretaceous has been focused in many researches. But rift evolution based on development and growth of faults has not been well explored. In this sense, we investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand the geometry of major faults and the influence of crustal heterogeneity and preexisting structural fabric in the evolution of the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze four major border fault segments and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement measured in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault segments, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of the rift fault segments. The variation of the displacements along the fault segments indicates that the fault segments were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in Early Cretaceous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discussion about rift evolution in the Brazilian Equatorial margin during the South America-Africa breakup in the Jurassic/Cretaceous has been focused in many researches. But rift evolution based on development and growth of faults has not been well explored. In this sense, we investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand the geometry of major faults and the influence of crustal heterogeneity and preexisting structural fabric in the evolution of the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze four major border fault segments and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement measured in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault segments, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of the rift fault segments. The variation of the displacements along the fault segments indicates that the fault segments were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in Early Cretaceous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the numerical analysis of nonlinear trusses summited to thermomechanical actions with Finite Element Method (FEM). The proposed formulation is so-called positional FEM and it is based on the minimum potential energy theorem written according to nodal positions, instead of displacements. The study herein presented considers the effects of geometric and material nonlinearities. Related to dynamic problems, a comparison between different time integration algorithms is performed. The formulation is extended to impact problems between trusses and rigid wall, where the nodal positions are constrained considering nullpenetration condition. In addition, it is presented a thermodynamically consistent formulation, based on the first and second law of thermodynamics and the Helmholtz free-energy for analyzing dynamic problems of truss structures with thermoelastic and thermoplastic behavior. The numerical results of the proposed formulation are compared with examples found in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to relative ground movement, buried pipelines experience geotechnical loads. The imposed geotechnical loads may initiate pipeline deformations that affect system serviceability and integrity. Engineering guidelines (e.g., ALA, 2005; Honegger and Nyman, 2001) provide the technical framework to develop idealized structural models to analyze pipe‒soil interaction events and assess pipe mechanical response. The soil behavior is modeled using discrete springs that represent the geotechnical loads per unit pipe length developed during the interaction event. Soil forces are defined along three orthogonal directions (i.e., axial, lateral and vertical) to analyze the response of pipelines. Nonlinear load-displacement relationships of soil defined by a spring, is independent of neighboring spring elements. However, recent experimental and numerical studies demonstrate significant coupling effects during oblique (i.e., not along one of the orthogonal axes) pipe‒soil interaction events. In the present study, physical modeling using a geotechnical centrifuge was conducted to improve the current understanding of soil load coupling effects of buried pipes in loose and dense sand. A section of pipeline, at shallow burial depth, was translated through the soil at different oblique angles in the axial-lateral plane. The force exerted by the soil on pipe is critically examined to assess the significance of load coupling effects and establish a yield envelope. The displacements required to soil yield force are also examined to assess potential coupling in mobilization distance. A set of laboratory tests were conducted on the sand used for centrifuge modeling to find the stress-strain behavior of sand, which was used to examine the possible mechanisms of centrifuge model test. The yield envelope, deformation patterns, and interpreted failure mechanisms obtained from centrifuge modeling are compared with other physical modeling and numerical simulations available in the literature.