965 resultados para Cylindrical symmetry
Resumo:
Nonlinear computational analysis of materials showing elasto-plasticity or damage relies on knowledge of their yield behavior and strengths under complex stress states. In this work, a generalized anisotropic quadric yield criterion is proposed that is homogeneous of degree one and takes a convex quadric shape with a smooth transition from ellipsoidal to cylindrical or conical surfaces. If in the case of material identification, the shape of the yield function is not known a priori, a minimization using the quadric criterion will result in the optimal shape among the convex quadrics. The convexity limits of the criterion and the transition points between the different shapes are identified. Several special cases of the criterion for distinct material symmetries such as isotropy, cubic symmetry, fabric-based orthotropy and general orthotropy are presented and discussed. The generality of the formulation is demonstrated by showing its degeneration to several classical yield surfaces like the von Mises, Drucker–Prager, Tsai–Wu, Liu, generalized Hill and classical Hill criteria under appropriate conditions. Applicability of the formulation for micromechanical analyses was shown by transformation of a criterion for porous cohesive-frictional materials by Maghous et al. In order to demonstrate the advantages of the generalized formulation, bone is chosen as an example material, since it features yield envelopes with different shapes depending on the considered length scale. A fabric- and density-based quadric criterion for the description of homogenized material behavior of trabecular bone is identified from uniaxial, multiaxial and torsional experimental data. Also, a fabric- and density-based Tsai–Wu yield criterion for homogenized trabecular bone from in silico data is converted to an equivalent quadric criterion by introduction of a transformation of the interaction parameters. Finally, a quadric yield criterion for lamellar bone at the microscale is identified from a nanoindentation study reported in the literature, thus demonstrating the applicability of the generalized formulation to the description of the yield envelope of bone at multiple length scales.
Resumo:
Polar molecular crystals seem to contradict a quantum mechanical statement, according to which no stationary state of a system features a permanent electrical polarization. By stationary we understand here an ensemble for which thermal averaging applies. In the language of statistical mechanics we have thus to ask for the thermal expectation value of the polarization in molecular crystals. Nucleation aggregates and growing crystal surfaces can provide a single degree of freedom for polar molecules required to average the polarization. By means of group theoretical reasoning and Monte Carlo simulations we show that such systems thermalize into a bi-polar state featuring zero bulk polarity. A two domain, i.e. bipolar state is obtained because boundaries are setting up opposing effective electrical fields. Described phenomena can be understood as a process of partial ergodicity-restoring. Experimentally, a bi-polar state of molecular crystals was demonstrated using phase sensitive second harmonic generation and scanning pyroelectric microscopy
Resumo:
Research has shown that people judge words as having bigger font size than non-words. This finding has been interpreted in terms of processing fluency, with higher fluency leading to judgments of bigger size. If so, symmetric numbers (e.g., 44) which can be processed more fluently are predicted to be judged as larger than asymmetric numbers (e.g., 43). However, recent research found that symmetric numbers were judged to be smaller than asymmetric numbers. This finding suggests that the mechanisms underlying size judgments may differ in meaningful and meaningless materials. Supporting this notion, we showed in Experiment 1 that meaning increased judged size, whereas symmetry decreased judged size. In the next two experiments, we excluded several alternative explanations for the differences in size judgments between meaningful and meaningless materials in earlier studies. This finding contradicts the notion that the mechanism underlying judgments of size is processing fluency.
Holes localized on a Skyrmion in a doped antiferromagnet on the honeycomb lattice: Symmetry analysis
Resumo:
Using the low-energy effective field theory for hole-doped antiferromagnets on the honeycomb lattice, we study the localization of holes on Skyrmions, as a potential mechanism for the preformation of Cooper pairs. In contrast to the square lattice case, for the standard radial profile of the Skyrmion on the honeycomb lattice, only holes residing in one of the two hole pockets can get localized. This differs qualitatively from hole pairs bound by magnon exchange, which is most attractive between holes residing in different momentum space pockets. On the honeycomb lattice, magnon exchange unambiguously leads to f-wave pairing, which is also observed experimentally. Using the collective-mode quantization of the Skyrmion, we determine the quantum numbers of the localized hole pairs. Again, f-wave symmetry is possible, but other competing pairing symmetries cannot be ruled out.