907 resultados para Cultures locales de vaccination
Resumo:
Background Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat (‘artificial animal’) applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Results Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. Conclusions We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.
Resumo:
Three experiments examined the cultural relativity of emotion recognition using the visual search task. Caucasian-English and Japanese participants were required to search for an angry or happy discrepant face target against an array of competing distractor faces. Both cultural groups performed the task with displays that consisted of Caucasian and Japanese faces in order to investigate the effects of racial congruence on emotion detection performance. Under high perceptual load conditions, both cultural groups detected the happy face more efficiently than the angry face. When perceptual load was reduced such that target detection could be achieved by feature-matching, the English group continued to show a happiness advantage in search performance that was more strongly pronounced for other race faces. Japanese participants showed search time equivalence for happy and angry targets. Experiment 3 encouraged participants to adopt a perceptual based strategy for target detection by removing the term 'emotion' from the instructions. Whilst this manipulation did not alter the happiness advantage displayed by our English group, it reinstated it for our Japanese group, who showed a detection advantage for happiness only for other race faces. The results demonstrate cultural and linguistic modifiers on the perceptual saliency of the emotional signal and provide new converging evidence from cognitive psychology for the interactionist perspective on emotional expression recognition.
Resumo:
This paper explores the long term development of networks of glia and neurons on patterns of Parylene-C on a SiO2 substrate. We harvested glia and neurons from the Sprague-Dawley (P1–P7) rat hippocampus and utilized an established cell patterning technique in order to investigate cellular migration, over the course of 3 weeks. This work demonstrates that uncontrolled glial mitosis gradually disrupts cellular patterns that are established early during culture. This effect is not attributed to a loss of protein from the Parylene-C surface, as nitrogen levels on the substrate remain stable over 3 weeks. The inclusion of the anti-mitotic cytarabine (Ara-C) in the culture medium moderates glial division and thus, adequately preserves initial glial and neuronal conformity to underlying patterns. Neuronal apoptosis, often associated with the use of Ara-C, is mitigated by the addition of brain derived neurotrophic factor (BDNF). We believe that with the right combination of glial inhibitors and neuronal promoters, the Parylene-C based cell patterning method can generate structured, active neural networks that can be sustained and investigated over extended periods of time. To our knowledge this is the first report on the concurrent application of Ara-C and BDNF on patterned cell cultures.
Resumo:
Increasing evidence demonstrates that beta-amyloid (Ab) is toxic to synapses, resulting in the progressive dismantling of neuronal circuits. Counteract the synaptotoxic effects of Ab could be particularly relevant for providing effective treatments for Alzheimer’s disease (AD). Curcumin was recently reported to improve learning and memory in animal models of AD. Little is currently known about the specific mechanisms by which Ab affects neuronal excitability and curcumin ameliorates synaptic transmission in the hippocampus. Organotypic hippocampal slice cultures exposed to Ab1–42 were used to study the neuroprotective effects of curcumin through a spectral analysis of multi-electrode array (MEA) recordings of spontaneous neuronal activity. Curcumin counteracted both deleterious effects of Ab; the initial synaptic dysfunction and the later neuronal death. The analysis of MEA recordings of spontaneous neuronal activity showed an attenuation of signal propagation induced by Ab before cell death and curcumin-induced alterations to local field potential (LFP) phase coherence. Curcumin-mediated attenuation of Ab-induced synaptic dysfunction involved regulation of synaptic proteins, namely phospho-CaMKII and phosphosynapsin I. Taken together, our results expand the neuroprotective role of curcumin to a synaptic level. The identification of these mechanisms underlying the effects of curcumin may lead to new targets for future therapies for AD.
Resumo:
Imbalances in gut microbiota composition during ulcerative colitis (UC) indicate a role for the microbiota in propagating the disorder. Such effects were investigated using in vitro batch cultures (with/without mucin, peptone or starch) inoculated with faecal slurries from healthy or UC patients; the growth of five bacterial groups was monitored along with short-chain fatty acid (SCFA) production. Healthy cultures gave two-fold higher growth and SCFA levels with up to ten-fold higher butyrate production. Starch gave the highest growth and SCFA production (particularly butyrate), indicating starch-enhanced saccharolytic activity. Sulphate-reducing bacteria (SRB) were the predominant bacterial group (of five examined) for UC inocula whereas they were the minority group for the healthy inocula. Furthermore, SRB growth was stimulated by peptone presumably due to the presence of sulphur-rich amino acids. The results suggest raised SRB levels in UC, which could contribute to the condition through release of toxic sulphide.
Resumo:
Contagious bovine pleuropneumonia (CBPP) is an economically important trans-boundary cattle disease which affects food security and livelihoods. A conjoint analysis–contingent valuation was carried out on 190 households in Narok South District of Kenya to measure willingness to pay (WTP) and demand for CBPP vaccine and vaccination as well as factors affecting WTP. The mean WTP was calculated at Kenya Shillings (KSh) 212.48 (USD 3.03) for vaccination using a vaccine with the characteristics that were preferred by the farmers (preferred vaccine and vaccination) and KSh −71.45 (USD −1.02) for the currently used vaccine and vaccination. The proportion of farmers willing to pay an amount greater than zero was 66.7% and 34.4% for the preferred and current vaccine and vaccination respectively. About one third (33.3%) of farmers would need to be compensated an average amount of KSh 1162.62 (USD 13.68) per animal to allow their cattle to be vaccinated against CBPP using the preferred vaccine and vaccination. About two-thirds (65.6%) of farmers would need to be compensated an average amount of KSh 853.72 (USD 12.20) per animal to allow their cattle to be vaccinated against CBPP using the current vaccine and vaccination. The total amount of compensation would be KSh 61.39 million (USD 0.88 million) for the preferred vaccine and vaccination and KSh 90.15 million (USD 1.29 million) for the current vaccine and vaccination. Demand curves drawn from individual WTP demonstrated that only 59% and 27% of cattle owners with a WTP greater than zero were willing to pay a benchmark cost of KSh 34.60 for the preferred and current vaccine respectively. WTP was negatively influenced by the attitude about household economic situation (p = 0.0078), presence of cross breeds in the herd (p < 0.0001) and years since CBPP had been experienced in the herd (p = 0.0375). It was positively influenced by education (p = 0.0251) and the practice of treating against CBPP (p = 0.0432). The benefit cost ratio (BCR) for CBPP vaccination was 2.9–6.1 depending on the vaccination programme. In conclusion, although a proportion of farmers was willing to pay, participation levels may be lower than those required to interrupt transmission of CBPP. Households with characteristics that influence WTP negatively need persuasion to participate in CBPP vaccination. It is economically worthwhile to vaccinate against CBPP. A benefit cost analysis (BCA) using aggregated WTP as benefits can be used as an alternative method to the traditional BCA which uses avoided production losses (new revenue) and costs saved as benefits.
Resumo:
Contagious bovine pleuropneumonia (CBPP) is an economically important disease in most of sub-Saharan Africa. A conjoint analysis and ordered probit regression models were used to measure the preferences of farmers for CBPP vaccine and vaccination attributes. This was with regard to inclusion or not of an indicator in the vaccine, vaccine safety, vaccine stability as well as frequency of vaccination, vaccine administration and the nature of vaccination. The analysis was carried out in 190 households in Narok District of Kenya between October and December 2006 using structured questionnaires, 16 attribute profiles and a five-point Likert scale. The factors affecting attribute valuation were shown through a two-way location interaction model. The study also demonstrated the relative importance (RI) of attributes and the compensation value of attribute levels. The attribute coefficient estimates showed that farmers prefer a vaccine that has an indicator, is 100% safe and is administered by the government (p<0.0001). The preferences for the vaccine attributes were consistent with expectations. Preferences for stability, frequency of vaccination and nature of vaccination differed amongst farmers (p>0.05). While inclusion of an indicator in the vaccine was the most important attribute (RI=43.6%), price was the least important (RI=0.5%). Of the 22 household factors considered, 15 affected attribute valuation. The compensation values for a change from non inclusion to inclusion of an indicator, 95-100% safety, 2h to greater than 2h stability and from compulsory to elective vaccination were positive while those for a change from annual to biannual vaccination and from government to private administration were negative. The study concluded that the farmers in Narok District had preferences for specific vaccine and vaccination attributes. These preferences were conditioned by various household characteristics and disease risk factors. On average the farmers would need to be compensated or persuaded to accept biannual and private vaccination against CBPP. There is need for consideration of farmer preferences for vaccine attribute levels during vaccine formulations and farmer preferences for vaccination attribute levels when designing delivery of vaccines.
Resumo:
Iron is an essential cofactor for both mycobacterial growth during infection and for a successful protective immune response by the host. The immune response partly depends on the regulation of iron by the host, including the tight control of expression of the iron-storage protein, ferritin. BCG vaccination can protect against disease following Mycobacterium tuberculosis infection, but the mechanisms of protection remain unclear. To further explore these mechanisms, splenocytes from BCG-vaccinated guinea pigs were stimulated ex vivo with purified protein derivative from M. tuberculosis and a significant down-regulation of ferritin light- and heavy-chain was measured by reverse-transcription quantitative-PCR (P ≤0.05 and ≤0.01, respectively). The mechanisms of this down-regulation were shown to involve TNFα and nitric oxide. A more in depth analysis of the mRNA expression profiles, including genes involved in iron metabolism, was performed using a guinea pig specific immunological microarray following ex vivo infection with M. tuberculosis of splenocytes from BCG-vaccinated and naïve guinea pigs. M. tuberculosis infection induced a pro-inflammatory response in splenocytes from both groups, resulting in down-regulation of ferritin (P ≤0.05). In addition, lactoferrin (P ≤0.002), transferrin receptor (P ≤0.05) and solute carrier family 11A1 (P ≤0.05), were only significantly down-regulated after infection of the splenocytes from BCG-vaccinated animals. The results show that expression of iron-metabolism genes is tightly regulated as part of the host response to M. tuberculosis infection and that BCG-vaccination enhances the ability of the host to mount an iron-restriction response which may in turn help to combat invasion by mycobacteria.
Resumo:
The approach of reaggregation involves the regeneration and self-renewal of histotypical 3D spheres from isolated tissue kept in suspension culture. Reaggregated spheres can be used as tumour, genetic, biohybrid and neurosphere models. In addition the functional superiority of 3D aggregates over conventional 2D cultures developed the use of neurospheres for brain engineering of CNS diseases. Thus 3D aggregate cultures created enormous interest in mechanisms that regulate the formation of multicellular aggregates in vitro. Here we analyzed mechanisms guiding the development of 3D neurosphere cultures. Adult neural stem cells can be cultured as self-adherent clusters, called neurospheres. Neurospheres are characterised as heterogeneous clusters containing unequal stem cell sub-types. Tumour necrosis factor-alpha (TNF-alpha is one of the crucial inflammatory cytokines with multiple actions on several cell types. TNF-alpha strongly activates the canonical Nuclear Factor Kappa-B (NF- kappaB) pathway. In order to investigate further functions of TNF in neural stem cells (NSCs) we tested the hypothesis that TNF is able to modulate the motility and/or migratory behaviour of SVZ derived adult neural stem cells. We observed a significantly faster sphere formation in TNF treated cultures than in untreated controls. The very fast aggregation of isolated NSCs (<2h) is a commonly observed phenomenon, though the mechanisms of 3D neurosphere formation remain largely unclear. Here we demonstrate for the first time, increased aggregation and enhanced motility of isolated NSCs in response to the TNF-stimulus. Moreover, this phenomenon is largely dependent on activated transcription factor NF-kappaB. Both, the pharmacological blockade of NF-kappaB pathway by pyrrolidine dithiocarbamate (PDTC) or Bay11-7082 and genetic blockade by expression of a transdominant-negative super-repressor IkappaB-AA1 led to decreased aggregation.
Resumo:
Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research.
Resumo:
Cardiac myocyte hypertrophy is associated with an increase in expression of immediate early genes (e.g. c-jun) via activation of pre-existing transcription factors. The activity of CREB transcription factor is regulated through phosphorylation of Ser-133 by one of several protein kinases (e.g. protein kinase A (PKA), p90 ribosomal S6 kinases (RSKs) and the related kinase, MSK1). A cell-permeable form of cAMP, hypertrophic agonists (endothelin-1 (ET-1), phenylephrine (PE)) and hyperosmotic shock all promoted phosphorylation of CREB(Ser-133) in rat neonatal cardiac myocytes. The response to endothelin-1 required the extracellular signal-regulated kinase cascade which stimulates both RSKs and MSK1. Phosphorylation of CREB(Ser-133) in response to ET-1 was not associated with any increase in DNA binding to a consensus cAMP-response element (CRE). The rat c-jun promoter contains elements which may bind either c-Jun/ATF2 or CREB/ATF1 dimers. Using extracts from rat cardiac myocytes, we identified at least two complexes which bind to the most proximal of these elements, one of which contained CREB and the other c-Jun. Thus, phosphorylation and activation of CREB in cardiac myocytes may be effected by a range of different stimuli to influence the expression of immediate early genes such as c-jun.
Resumo:
Background Ageing increases risk of respiratory infections and impairs the response to influenza vaccination. Pre- and probiotics offer an opportunity to modulate anti-viral defenses and the response to vaccination via alteration of the gut microbiota. This study investigated the effect of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486, combined with a prebiotic, gluco-oligosaccharide (B. longum + Gl-OS), on the response to seasonal influenza vaccination in young and older subjects in a double-blind, randomized controlled trial, taking into account the influence of immunosenescence markers at baseline. Results Vaccination resulted in a significant increase in total antibody titres, vaccine-specific IgA, IgM and IgG and seroprotection to all three subunits of the vaccine in both young and older subjects, and in general, the increases in young subjects were greater. There was little effect of the synbiotic, although it tended to reduce seroconversion to the Brisbane subunit of the vaccine and the vaccine-specific IgG response in older subjects. Immunological characterization revealed that older subjects randomized to the synbiotic had a significantly higher number of senescent (CD28-CD57+) helper T cells at baseline compared with those randomized to the placebo, and they also had significantly higher plasma levels of anti-CMV IgG and a greater tendency for CMV seropositivity. Moreover, higher numbers of CD28-CD57+ helper T cells were associated with failure to seroconvert to Brisbane, strongly suggesting that the subjects randomized to the synbiotic were already at a significant disadvantage in terms of likely ability to respond to the vaccine compared with those randomized to the placebo. Conclusions Ageing was associated with marked impairment of the antibody response to influenza vaccination in older subjects and the synbiotic failed to reverse this impairment. However, the older subjects randomized to the synbiotic were at a significant disadvantage due to a greater degree of immunosenscence at baseline compared with those randomized to the placebo. Thus, baseline differences in immunosenescence between the randomized groups are likely to have influenced the outcome of the intervention, highlighting the need for detailed immunological characterization of subjects prior to interventions.
Resumo:
We estimated the sensitivity, i.e., the proportion of all cases of adverse events following immunization (AEFIs) reported to the Brazilian passive surveillance for adverse events following immunization (PSAEFI) with the diphtheria-tetanus-whole-cell pertussis-Haemophilus influenzae type b (DTwP/Hib) vaccine, as well as investigating factors associated with AEFIs reporting. During 2003-2004, 8303 AEFIs associated with DTwP-Hib were reported; hypotonic-hyporesponsive episodes (HHEs), fever and convulsions being the most common. Cure without sequel was achieved in 98.4% of the cases. The mean sensitivity of the PSAEFI was 22.3% and 31.6%, respectively, for HHE and convulsions, varying widely among states. Reporting rates correlated positively with the Human Development Index and coverage of adequate prenatal care, correlating negatively with infant mortality rates. Quality of life indicators and the degree of organization of health services are associated with greater PSAEFI sensitivity. In addition to consistently describing the principal AEFIs, PSAEFI showed the DTwP/Hib vaccine to be safe and allayed public fears related to its use. (C) 2010 Elsevier Ltd. All rights reserved.