954 resultados para Cross-resistance
Resumo:
We report herein highly efficient photocatalysts comprising supported nanoparticles (NPs) of gold (Au) and palladium (Pd) alloys, which utilize visible light to catalyse the Suzuki cross-coupling reactions at ambient temperature. The alloy NPs strongly absorb visible light, energizing the conduction electrons of NPs which produce highly energetic electrons at the surface sites. The surface of the energized NPs activates the substrates and these particles exhibit good activity on a range of typical Suzuki reaction combinations. The photocatalytic efficiencies strongly depend on the Au:Pd ratio of the alloy NPs, irradiation light intensity and wavelength. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive Suzuki reactions. Results of the density functional theory (DFT) calculations indicate that transfer of the light-excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. The knowledge acquired in this study may inspire further studies of new efficient photocatalysts and a wide range of organic syntheses driven by sunlight.
Resumo:
While virulence factors and the biofilm-forming capabilities of microbes are the key regulators of the wound healing process, the host immune response may also contribute in the events following wound closure or exacerbation of non-closure. We examined samples from diabetic and non-diabetic foot ulcers/wounds for microbial association and tested the microbes for their antibiotic susceptibility and ability to produce biofilms. A total of 1074 bacterial strains were obtained with staphylococci, Pseudomonas, Citrobacter and enterococci as major colonizers in diabetic samples. Though non-diabetic samples had a similar assemblage, the frequency of occurrence of different groups of bacteria was different. Gram-negative bacteria were found to be more prevalent in the diabetic wound environment while Gram-positive bacteria were predominant in non-diabetic ulcers. A higher frequency of monomicrobial infection was observed in samples from non-diabetic individuals when compared to samples from diabetic patients. The prevalence of different groups of bacteria varied when the samples were stratified according to age and sex of the individuals. Several multidrug-resistant strains were observed among the samples tested and most of these strains produced moderate to high levels of biofilms. The weakened immune response in diabetic individuals and synergism among pathogenic micro-organisms may be the critical factors that determine the delicate balance of the wound healing process.
Resumo:
We studied the community prevalence, patterns and predictors of hypertension in a large sub-population of South Asian adults with a view of identifying differential risk factors. Data were collected between years 2005-2006 and 5000 adults were invited for the study. The sample size was 4485, and about 39.5% were males. Mean systolic and diastolic blood pressures were 127.1 ± 19.8 mmHg and 75.4 ± 11.3 mmHg, respectively. Age-adjusted prevalence in all adults, males and females was 23.7%, 23.4% and 23.8%, respectively. Urban adults had a significantly higher prevalence of hypertension than rural adults. In the binary logistic-regression analysis, male gender (OR: 1.2), increasing age, Sri Lankan Moor ethnicity (OR: 1.6), physical inactivity (OR: 1.7), presence of diabetes (OR: 2.2) and central obesity (OR: 2.3) all were significantly associated with hypertension. In conclusion, nearly one-third of the Sri Lankan adult population is hypertensive. Hence, public health initiatives should encourage healthier lifestyles with emphasis on preventing obesity and increasing physical activity.
Resumo:
Background Previously studies showed that inverse dynamics based on motion analysis and force-plate is inaccurate compared to direct measurements for individuals with transfemoral amputation (TFA). Indeed, direct measurements can appropriately take into account the absorption at the prosthetic foot and the resistance at the prosthetic knee. [1-3] However, these studies involved only a passive prosthetic knee. Aim The objective of the present study was to investigate if different types of prosthetic feet and knees can exhibit different levels of error in the knee joint forces and moments. Method Three trials of walking at self-selected speed were analysed for 9 TFAs (7 males and 2 females, 47±9 years old, 1.76±0.1 m 79±17 kg) with a motion analysis system (Qualisys, Goteborg, Sweden), force plates (Kitsler, Winterthur, Switzerland) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee [1-17]. TFAs were all fitted with an osseointegrated implant system. The prostheses included different type of foot (N=5) and knee (N=3) components. The root mean square errors (RMSE) between direct measurements and the knee joint forces and moments estimated by inverse dynamics were computed for stance and swing phases of gait and expressed as a percentage of the measured amplitudes. A one-way Kruskal-Wallis ANOVA was performed (Statgraphics, Levallois-Perret, France) to analyse the effects of the prosthetic components on the RMSEs. Cross-effects and post-hoc tests were not analysed in this study. Results A significant effect (*) was found for the type of prosthetic foot on anterior-posterior force during swing (p=0.016), lateral-medial force during stance (p=0.009), adduction-abduction moment during stance (p=0.038), internal-external rotation moment during stance (p=0.014) and during swing (p=0.006), and flexion-extension moment during stance (p = 0.035). A significant effect (#) was found for the type of prosthetic knee on anterior-posterior force during swing (p=0.018) and adduction-abduction moment during stance (p=0.035). Discussion & Conclusion The RMSEs were larger during swing than during stance. It is because the errors on accelerations (as derived from motion analysis) become substantial with respect to the external loads. Thus, inverse dynamics during swing should be analysed with caution because the mean RMSEs are close to 50%. Conversely, there were fewer effects of the prosthetic components on RMSE during swing than during stance and, accordingly, fewer effects due to knees than feet. Thus, inverse dynamics during stance should be used with caution for comparison of different prosthetic components.
Resumo:
The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.
Resumo:
Background This study investigated the prevalence and socio-cultural correlates of postnatal mood disturbance amongst women 18–45 years old in Central Vietnam. Son preference and traditional confinement practices were explored as well as factors such as poverty, parity, family and intimate partner relationships and infant health. Methods A cross-sectional study was conducted in twelve randomly selected Commune Health Centres from urban and rural districts of Thua Thien Hue Province, Vietnam. Mother-infant dyads one to six months postpartum were invited to participate. Questionnaires from 431 mothers (urban n = 216; rural n = 215) assessed demographic and family characteristics, traditional confinement practices, son preference, infant health and social capital. The Edinburgh Postnatal Depression Scale (EPDS) and WHO5 Wellbeing Index indicated depressive symptoms and emotional wellbeing. Data were analysed using general linear models. Results Using an EPDS cut-off of 12/13, 18.1 % (n = 78, 95 % CI 14.6 - 22.1) of women had depressive symptoms (20.4 % urban; 15.8 % rural). Contrary to predictions, infant gender and traditional confinement were unrelated to depressive symptoms. Poverty, food insecurity, being frightened of family members, and intimate partner violence increased both depressive symptoms and lowered wellbeing. The first model accounted for 30.2 % of the variance in EPDS score and found being frightened of one’s husband, husband’s unemployment, breastfeeding difficulties, infant diarrhoea, and cognitive social capital were associated with higher EPDS scores. The second model had accounted for 22 % of the variance in WHO5 score. Living in Hue city, low education, poor maternal competence and a negative family response to the baby lowered maternal wellbeing. Conclusions Traditional confinement practices and son preference were not linked to depressive symptoms among mothers, but were correlates of family relationships and wellbeing. Poverty, food insecurity, violence, infant ill health, and discordant intimate and family relationships were linked with depressive symptoms in Central Vietnam.
Resumo:
The pervasive use of the World Wide Web by the general population has created a cultural shift in “our living world”. It has enabled more people to share more information about more events and issues in the world than was possible before its general use. As a consequence, it has transformed traditional news media’s approach to almost every aspect of journalism, with many organisations restructuring their philosophy and practice to include a variety of participatory spaces/forums where people are free to engage in deliberative dialogue about matters of public importance. Moreover, while news media were the traditional gatekeepers of information, today many organisations allow, to different degrees, the general public and other independent journalism entities to participate in the news production process, which may include agenda setting and content production. This paper draws from an international collective case study that showcases various approaches to networked online news journalism. It examines the ways in which different traditional news media models use digital tools and technologies for participatory communication of information about matters of public interest. The research finds differences between the ways in which public service, commercial and independent news media give voice to the public and ultimately their approach to journalism’s role as the Fourth Estate––one of the key institutions of democracy. The work is framed by the notion that journalism in democratic societies has a key role in ensuring citizens are informed and engaged with public affairs. An examination of four media models, the British Broadcasting Corporation (BBC), the Guardian, News Limited and OhmyNews, showcases the various approaches to networked online news journalism and how each provides different avenues for citizen empowerment. The cases are described and analysed in the context of their own social, political and economic setting. Semi-structured in-depth interviews with key senior journalists and editors provide specific information on comparisons between the distinctive practices of their own organisation. In particular these show how the ideal of democracy can be used as a tool of persuasion as much as a method of deliberation.
Resumo:
Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.
Resumo:
The fire performance of cold-formed steel members is an important criterion to be verified for their successful use in structural applications. However, lack of clear design guidance on their fire performance has inhibited their usage in buildings. Their elevated temperature mechanical properties, i.e., yield strengths, elastic moduli and stress–strain relationships, are imperative for the fire design. In the past many researchers have proposed elevated temperature mechanical property reduction factors for cold-formed steels, however, large variations exist among them. The LiteSteel Beam (LSB), a hollow flange channel section, is manufactured by a combined cold-forming and electric resistance welding process. Its web, inner and outer flange elements have different yield strengths due to varying levels of cold-working caused by their manufacturing process. Elevated temperature mechanical properties of LSBs are not the same even within their cross-sections. Therefore an experimental study was undertaken to determine the elevated temperature mechanical properties of steel plate elements in LSBs. Elevated temperature tensile tests were performed on web, inner and outer flange specimens taken from LSBs, and their results are presented in this paper including their comparisons with previous studies. Based on the test results and the proposed values from previous studies and fire design standards, suitable predictive equations are proposed for the determination of elevated temperature mechanical properties of LSB web and flange elements. Suitable stress–strain models are also proposed for the plate elements of this cold-formed and welded hollow flange channel section.
Resumo:
Fire resistance of load bearing Light Gauge Steel Frame (LSF) wall systems is important to protect lives and properties in fire accidents. Recent fire tests of LSF walls made of the new cold-formed and welded hollow flange channel (HFC) section studs and the commonly used lipped channel section (LCS) studs have shown the influence of stud sections on the fire resistance rating (FRR) of LSF walls. To advance the use of HFC section studs and to verify the outcomes from the fire tests, finite element models were developed to predict the structural fire performance of LSF walls made of welded HFC section studs. The developed models incorporated the measured non-uniform temperature distributions in LSF wall studs due to the exposure of standard fire on one side, and accurate elevated temperature mechanical properties of steel used in the stud sections. These models simulated the various complexities involved such as thermal bowing and neutral axis shift caused by the non-uniform temperature distribution in the studs. The finite element analysis (FEA) results agreed well with the full scale fire test results including the FRR, outer hot and cold flange temperatures at failure and axial deformation and lateral displacement profiles. They also confirmed the superior fire performance of LSF walls made of HFC section studs. The applicability of both transient and steady state FEA of LSF walls under fire conditions was verified in this study, which also investigated the effects of using various temperature distribution patterns across the cross-section of HFC section studs on the FRR of LSF walls. This paper presents the details of this numerical study and the results.
Resumo:
This paper reports a new class of photo-cross-linkable side chain liquid crystalline polymers (PSCLCPs) based on the bis(benzylidene)cyclohexanone unit, which functions as both a mesogen and a photoactive center. Polymers with the bis(benzylidene)cyclohexanone unit and varying spacer length have been synthesized. Copolymers of bis(benzylidene)cyclohexanone containing monomer and cholesterol benzoate containing monomer with different compositions have also been prepared. All these polymers have been structurally characterized by spectroscopic techniques. Thermal transitions were studied by DSC, and mesophases were identified by polarized light optical microscopy (POM). The intermediate compounds OH-x, the monomers SCLCM-x, and the corresponding polymers PSCLCP-x, which are essentially based on bis(benzylidene)cyclohexanone, all show a nematic mesophase. Transition temperatures were observed to decrease with increasing spacer length. The copolymers with varying compositions exhibit a cholesteric mesophase, and the transition temperatures increase with the cholesteric benzoate units in the copolymer. Photolysis of the low molecular weight liquid crystalline bis(benzylidene)-cyclohexanone compound reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerization and 2 pi + 2 pi addition. The EZ photoisomerization in the LC phase disrupts the parallel stacking of the mesogens, resulting in the transition from the LC phase to the isotropic phase. The photoreaction involving the 2 pi + 2 pi addition of the bis(benzylidene)cyclohexanone units in the polymer results in the cross-linking of the chains. The liquid crystalline induced circular dichroism (LCICD) studies of the cholesterol benzoate copolymers revealed that the cholesteric supramolecular order remains even after the photo-cross-linking.
Resumo:
D.C. electrical conductivity of polyaniline (33%,40%) blended with PMMA was measured from 5K to 300mK. The conductivity behaviour is consistent with fluctuation induced tunneling. Magneto-resistance (MR) was measured between 300K and 2K. From 20K to 2K, a large positive MR was observed. At 2K, for low magnetic fields (<1 Tesla), a deviation from the normal H-2 behaviour was observed.
Resumo:
This study examines and quantifies the effect of adding polyelectrolytes to cellulose nanofibre suspensions on the gel point of cellulose nanofibre suspensions, which is the lowest solids concentration at which the suspension forms a continuous network. The lower the gel point, the faster the drainage time to produce a sheet and the higher the porosity of the final sheet formed. Two new techniques were designed to measure the dynamic compressibility and the drainability of nanocellulose–polyelectrolyte suspensions. We developed a master curve which showed that the independent variable controlling the behaviour of nanocellulose suspensions and its composite is the structure of the flocculated suspension which is best quantified as the gel point. This was independent of the type of polyelectrolyte used. At an addition level of 2 mg/g of nanofibre, a reduction in gel point over 50 % was achieved using either a high molecular weight (13 MDa) linear cationic polyacrylamide (CPAM, 40 % charge), a dendrimer polyethylenimine of high molecular weight of 750,000 Da (HPEI) or even a low molecular weight of 2000 Da (LPEI). There was no significant difference in the minimum gel point achieved, despite the difference in polyelectrolyte morphology and molecular weight. In this paper, we show that the gel point controls the flow through the fibre suspension, even when comparing fibre suspensions with solids content above the gel point. A lower gel point makes it easier for water to drain through the fibre network,reducing the pressure required to achieve a given dewatering rate and reducing the filtering time required to form a wet laid sheet. We further show that the lower gel point partially controls the structure of the wet laid sheet after it is dried. Halving the gel point increased the air permeability of the dry sheet by 37, 46 and 25 %, when using CPAM, HPEI and LPEI, respectively. The resistance to liquid flow was reduced by 74 and 90 %, when using CPAM and LPEI. Analysing the paper formed shows that sheet forming process and final sheet properties can be engineered and controlled by adding polyelectrolytes to the nanofibre suspension.
Resumo:
The late twentieth century witnessed the transformation of the global economy beyond the fixed geographic boundaries of the nation-state system to one dominated by financial centers, global markets, and transnational firms. In the two decades to 2011, cross-border philanthropy from OECD Development Assistance Committee (DAC) donor countries to the developing world grew from approximately USD 5 billion to USD 32 billion (OECD, n.d.),[1] with some estimates for 2011 as high as USD 59 billion (Center for Global Prosperity, 2013). This is only part of cross-border philanthropy, which also includes remittances from migrant communities, social-media-enabled global fundraising, and medical research collaborations.
Resumo:
We demonstrate that the low-frequency resistance uctuations, or noise, in bilayer graphene is strongly connected to its band structure, and displays a minimum when the gap between the conduction and valence band is zero. Using double-gated bilayer graphene devices we have tuned the zero gap and charge neutrality points independently, which oers a versatile mechanism to investigate the low-energy band structure, charge localization and screening properties of bilayer graphene.