954 resultados para Creatinine Clearance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising ``multiantigen'' vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed steady and unsteady experimental measurements and analysis were performed on a Single stage Transonic Axial Compressor with asymmetric rotor tip clearance for studying the compressor stall phenomena. The installed compressor had asymmetric tip clearance around the rotor casing varying from about 0.65mm to 1.25mm. A calibrated 5-hole aerodynamic probe was traversed radially at exit of rotor and showed the characteristics of increased flow angle at lower mass flow rates for all the speeds. Mach number distribution and boundary layer effects were also clearly captured. Unsteady measurements for velocity were carried out to study the stall cell behavior using a single component calibrated hotwire probe oriented in axial and tangential directions for choke/free flow and near stall conditions. The hotwire probe was traversed radially across the annulus at inlet to the compressor and showed that the velocity fluctuations were dissimilar when probe was aligned axial and tangential to the flow. Averaged velocities across the annulus showed the reduction in velocity as stall was approached. Axial mean flow velocity decreased across the annulus for all the speeds investigated. Tangential velocity at free flow condition was higher at the tip region due to larger radius. At stall condition, the tangential velocity showed decreased velocities at the tip and slightly increased velocities at the hub section indicating that the flow has breakdown at the tip region of the blade and fluid is accelerated below the blockage zone. The averaged turbulent intensity in axial and tangential flow directions increased from free flow to stall condition for all compressor rated speeds. Fast Fourier Transform (FFT) of the raw signals at stall flow condition showed stall cell and its corresponding frequency of occurrence. The stalling frequency of about half of rotational speed of the rotor along with large tip clearance suggests that modal type stall inception was occurring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We isolated an 8 kDa mycobacterial hypothetical protein, Rv3423.1, from the chromatin of human macrophages infected with Mycobacterium tuberculosis H37Rv. Bioinformatics predictions followed by in vitro biochemical assays with purified recombinant protein showed that Rv3423.1 is a novel histone acetyltransferase that acetylates histone H3 at the K9/K14 positions. Transient transfection of macrophages containing GFP-tagged histone H1 with RFP-tagged Rv3423.1 revealed that the protein co-localizes with the chromatin in the nucleus. Co-immunoprecipitation assays confirmed that the Rv3423.1-histone interaction is specific. Rv3423.1 protein was detected in the culture filtrate of virulent but not avirulent M. tuberculosis. Infection of macrophages with recombinant Mycobacterium smegmatis constitutively expressing Rv3423.1 resulted in a significant increase in the number of intracellular bacteria. However, the protein did not seem to offer any growth advantage to free-living recombinant M. smegmatis. It is highly likely that, by binding to the host chromatin, this histone acetyltransferase from M. tuberculosis may manipulate the expression of host genes involved in anti-inflammatory responses to evade clearance and to survive in the intracellular environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to quantify leakage flow and windage heating for labyrinth seals with honeycomb lands is critical in understanding gas turbine engine system performance and predicting its component life. Variety of labyrinth seal configurations (number of teeth, stepped or straight, honeycomb cell size) are in use in gas turbines, and for each configuration, there are many geometric factors that can impact a seal's leakage and windage characteristics. This paper describes the development of a numerical methodology aimed at studying the effect of honeycomb lands on leakage and windage heating. Specifically, a three-dimensional computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the renormalization group (RNG) k-epsilon turbulence model with modified Schmidt number. The modified turbulence model is benchmarked and fine-tuned based on several experiments. Using this model, a broad parametric study is conducted by varying honeycomb cell size, pressure ratio (PR), and radial clearance for a four-tooth straight-through labyrinth seal. The results show good agreement with available experimental data. They further indicate that larger honeycomb cells predict higher seal leakage and windage heating at tighter clearances compared to smaller honeycomb cells and smooth lands. However, at open seal clearances larger honeycomb cells have lower leakage compared to smaller honeycomb cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacter jejuni is one of the most common causes of acute enteritis in the developed world. The consumption of contaminated poultry, where C. jejuni is believed to be a commensal organism, is a major risk factor. However, the dynamics of this colonization process in commercially reared chickens is still poorly understood. Quantification of these dynamics of infection at an individual level is vital to understand transmission within populations and formulate new control strategies. There are multiple potential routes of introduction of C. jejuni into a commercial flock. Introduction is followed by a rapid increase in environmental levels of C. jejuni and the level of colonization of individual broilers. Recent experimental and epidemiological evidence suggest that the celerity of this process could be masking a complex pattern of colonization and extinction of bacterial strains within individual hosts. Despite the rapidity of colonization, experimental transmission studies exhibit a highly variable and unexplained delay time in the initial stages of the process. We review past models of transmission of C. jejuni in broilers and consider simple modifications, motivated by the plausible biological mechanisms of clearance and latency, which could account for this delay. We show how simple mathematical models can be used to guide the focus of experimental studies by providing testable predictions based on our hypotheses. We conclude by suggesting that competition experiments could be used to further understand the dynamics and mechanisms underlying the colonization process. The population models for such competition processes have been extensively studied in other ecological and evolutionary contexts. However, C. jejuni can potentially adapt phenotypically through phase variation in gene expression, leading to unification of ecological and evolutionary time-scales. For a theoretician, the colonization dynamics of C. jejuni offer an experimental system to explore these 'phylodynamics', the synthesis of population dynamics and evolutionary biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Publication: Panama Canal Review Special Edition. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida. This special edition features articles on Panama reprinted from THE PANAMA CANAL REVIEW, which began publication May 5, 1950. These articles, for which there have been many requests for reprints, have been selected from issues published between 1965 and 1973. Review articles may be reprinted without further clearance (69 page document)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mannose receptor (MR) is widely expressed on macrophages, immature dendritic cells, and a variety of epithelial and endothelial cells. It is a 180 kD type I transmembrane receptor whose extracellular region consists of three parts: the amino-terminal cysteine-rich domain (Cys-MR); a fibronectin type II-like domain; and a series of eight tandem C-type lectin carbohydrate recognition domains (CRDs). Two portions of MR have distinct carbohydrate recognition properties: Cys-MR recognizes sulfated carbohydrates and the tandem CRD region binds terminal mannose, fucose, and N-acetyl-glucosamine (GlcNAc). The dual carbohydrate binding specificity allows MR to interact with sulfated and nonsulfated polysaccharide chains, and thereby facilitating the involvement of MR in immunological and physiological processes. The immunological functions of MR include antigen capturing (through binding non-sulfated carbohydrates) and antigen targeting (through binding sulfated carbohydrates), and the physiological roles include rapid clearance of circulatory luteinizing hormone (LH), which bears polysaccharide chains terminating with sulfated and non-sulfated carbohydrates.

We have crystallized and determined the X-ray structures of unliganded Cys-MR (2.0 Å) and Cys-MR complexed with different ligands, including Hepes (1.7 Å), 4SO_4-N-Acetylgalactosamine (4SO_4-GalNAc; 2.2 Å), 3SO_4-Lewis^x (2.2 Å), 3S04-Lewis^a (1.9 Å), and 6SO_4-GalNAc (2.5 Å). The overall structure of Cys-MR consists of 12 anti-parallel β-strands arranged in three lobes with approximate three fold internal symmetry. The structure contains three disulfide bonds, formed by the six cysteines in the Cys-MR sequence. The ligand-binding site is located in a neutral pocket within the third lobe, in which the sulfate group of ligand is buried. Our results show that optimal binding is achieved by a carbohydrate ligand with a sulfate group that anchors the ligand by forming numerous hydrogen bonds and a sugar ring that makes ring-stacking interactions with Trpll7 of CysMR. Using a fluorescence-based assay, we characterized the binding affinities between CysMR and its ligands, and rationalized the derived affinities based upon the crystal structures. These studies reveal the mechanism of sulfated carbohydrate recognition by Cys-MR and facilitate our understanding of the role of Cys-MR in MR recognition of its ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A excreção urinária de glicosaminoglicanos (GAG) está alterada em várias patologias do trato urinário; o padrão de excreção pode estar associado com o estado da doença. A excreção urinária de GAG em crianças com bexiga neurogênica (BN) secundária a mielomeningocele (MMC) pode também estar alterada, mas até a presente data não há detalhamento epidemiológico dos pacientes e não se correlacionou o padrão de excreção com grau de disfunção vesical. Analisamos a excreção urinária de um grupo bem definido de crianças com MMC e correlacionamos os resultados com escore cistométrico. As amostras de urina de 17 pacientes com MMC, 10 meninos e 7 meninas (média de idade DP de 4,6 2,9 anos) foram obtidas durante o exame cistométrico. As amostras do grupo controle foram obtidas de 18 crianças normais, 13 meninos e 5 meninas (6,9 2,2 anos). Todas as crianças não estavam com infecção urinária, tinham função renal normal e não estavam sob tratamento farmacológico. A quantificação do GAG urinário total foi expressa em μg de ácido hexurônico / mg de creatinina e a proporção dos diferentes tipos de GAGs sulfatados foi obtida por eletroforese em gel de agarose. A avaliação cistométrica foi realizada utilizando aparelho de urodinâmica Dynapack modelo MPX816 (Dynamed, São Paulo, Brasil), a partir da qual o escore cistométrico foi calculado de acordo com procedimento recente publicado. [14]. Não observamos diferença significativa na excreção urinária de GAG total entre meninos e meninas tanto no grupo com MMC ( 0,913 0,528 vs 0,867 0,434, p>0,05) como no grupo controle (0,546 0,240 vs 0,699 0,296, p>0,05). Os resultados mostraram também que a excreção de GAG urinário não se correlacionou com a idade tanto no grupo com MMC ( r = -0,28, p> 0,05) como no grupo controle (r = -0,40, p> 0,05). Entretanto, a comparação dos dois grupos mostrou que o grupo com MMC excretava 52% a mais de GAG total que o grupo controle (0,894 0,477 vs 0,588 0,257, p <0,04). Nesses pacientes a excreção de GAG total não se correlacionou com a complacência vesical isoladamente (r = -0,18, p> 0,05) mas foi significativa e negativamente correlacionada ao escore cistométrico (r= -0,56, p<0,05). Em média, os pacientes com piores escores (<9) excretaram 81% a mais de GAG que os pacientes com melhor escore (>9) (1,157 0,467 vs 0,639 0,133, p<0,04). O sulfato de condroitin foi o GAG sulfatado predominante nos grupos neurogênico e controles (92,5 7,6% vs 96,4 4,8%, respectivamente, p> 0,05), enquanto o sulfato do heparan estava presente em quantidades marcadamente menores; o dermatam sulfato não foi detectado. A excreção urinária de GAG em pacientes com MMC é significativamente maior que a excreção das crianças normais e os altos valores encontrados estão correlacionados a um maior compromentimento da função vesical. Evidências em modelos animais com MMC induzida sugerem que alterações no detrusor estão associadas a um elevado turnover da matriz extra celular (MEC) vesical, o que pode explicar a elevada excreção de GAG nos pacientes com MMC. Além disso, esses resultados indicam que a excreção urinária de GAG pode ser usada como fator adjuvante para a caracterização da disfunção vesical em pacientes com MMC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I

Regression analyses are performed on in vivo hemodialysis data for the transfer of creatinine, urea, uric acid and inorganic phosphate to determine the effects of variations in certain parameters on the efficiency of dialysis with a Kiil dialyzer. In calculating the mass transfer rates across the membrane, the effects of cell-plasma mass transfer kinetics are considered. The concept of the effective permeability coefficient for the red cell membrane is introduced to account for these effects. A discussion of the consequences of neglecting cell-plasma kinetics, as has been done to date in the literature, is presented.

A physical model for the Kiil dialyzer is presented in order to calculate the available membrane area for mass transfer, the linear blood and dialysate velocities, and other variables. The equations used to determine the independent variables of the regression analyses are presented. The potential dependent variables in the analyses are discussed.

Regression analyses were carried out considering overall mass-transfer coefficients, dialysances, relative dialysances, and relative permeabilities for each substance as the dependent variables. The independent variables were linear blood velocity, linear dialysate velocity, the pressure difference across the membrane, the elapsed time of dialysis, the blood hematocrit, and the arterial plasma concentrations of each substance transferred. The resulting correlations are tabulated, presented graphically, and discussed. The implications of these correlations are discussed from the viewpoint of a research investigator and from the viewpoint of patient treatment.

Recommendations for further experimental work are presented.

Part II

The interfacial structure of concurrent air-water flow in a two-inch diameter horizontal tube in the wavy flow regime has been measured using resistance wave gages. The median water depth, r.m.s. wave height, wave frequency, extrema frequency, and wave velocity have been measured as functions of air and water flow rates. Reynolds numbers, Froude numbers, Weber numbers, and bulk velocities for each phase may be calculated from these measurements. No theory for wave formation and propagation available in the literature was sufficient to describe these results.

The water surface level distribution generally is not adequately represented as a stationary Gaussian process. Five types of deviation from the Gaussian process function were noted in this work. The presence of the tube walls and the relatively large interfacial shear stresses precludes the use of simple statistical analyses to describe the interfacial structure. A detailed study of the behavior of individual fluid elements near the interface may be necessary to describe adequately wavy two-phase flow in systems similar to the one used in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of the study has been to investigate in detail the rapidly-varying peak uplift pressure and the slowly-varying positive and negative uplift pressures that are known to be exerted by waves against the underside of a horizontal pier or platform located above the still water level, but not higher than the crests of the incident waves.

In a "two-dimensional" laboratory study conducted in a 100-ft long by 15-in.-wide by 2-ft-deep wave tank with a horizontal smooth bottom, individually generated solitary waves struck a rigid, fixed, horizontal platform extending the width of the tank. Pressure transducers were mounted flush with the smooth soffit, or underside, of the platform. The location of the transducers could be varied.

The problem of a d equate dynamic and spatial response of the transducers was investigated in detail. It was found that unless the radius of the sensitive area of a pressure transducer is smaller than about one-third of the characteristic width of the pressure distribution, the peak pressure and the rise-time will not be recorded accurately. A procedure was devised to correct peak pressures and rise-times for this transducer defect.

The hydrodynamics of the flow beneath the platform are described qualitatively by a si1nple analysis, which relates peak pressure and positive slowly-varying pressure to the celerity of the wave front propagating beneath the platform, and relates negative slowly-varying pressure to the process by which fluid recedes from the platform after the wave has passed. As the wave front propagates beneath the platform, its celerity increases to a maximum, then decreases. The peak pressure similarly increases with distance from the seaward edge of the platform, then decreases.

Measured peak pressure head, always found to be less than five times the incident wave height above still water level, is an order of magnitude less than reported shock pressures due to waves breaking against vertical walls; the product of peak pressure and rise-time, considered as peak impulse, is of the order of 20% of reported shock impulse due to waves breaking against vertical walls. The maximum measured slowly-varying uplift pressure head is approximately equal to the incident wave height less the soffit clearance above still water level. The normalized magnitude and duration of negative pressure appears to depend principally on the ratio of soffit clearance to still water depth and on the ratio of platform length to still water depth.