950 resultados para Covered interest rate parity
Resumo:
Includes bibliography
Resumo:
The association of genetic polymorphism in the estrogen receptor alpha (ERα) gene and risk for diseases including breast cancer (BC) has been the subject of great interest. Objective: Checking on women with high breast density after menopause, the frequency of the Pvull and Xbal polymorphisms of the ERα gene and the correlation between them and the known risk factors for breast cancer. Method: Observational study with 308 women between 45 and 65 years old with high breast density, without hormonal therapy, menstruation for a year or more, breast and ovarian cancer history. It was characterized in clinical history and physical examination: menarche, menopause, parity, family history of BC, smoking, alcohol intake and body mass index. Results: The allelic and genotypic frequencies for ERα-Pvull and Xbal: p=43.99%; p=56.01%; pp=32.14%; Pp=47.73% and PP=20.13%; X=41.56%; x=58.44%; xx=33.44%; Xx=50.00% and XX=16.56%, respectively. The most frequent risk factors for BC: menarche before 12 years old (35.38%), nulliparity or first child after 28 years old (41.66%), family history of BC (19.16%) and overweight/obesity (62.01%). Conclusion: Allelic and genotypic distribution similar to literature. The risk factors for BC were more prevalent in women with high breast density but without significant associations with these polymorphisms. © 2013 Informa UK Ltd. All rights reserved.
Resumo:
The prime movers behind the prehistoric colonization of Remote Oceania, and in particular the large c. 2000-year temporal gap (i.e. long pause') seen between West and East Polynesia, has long been major point of interest in the Pacific. To address these events and the processes that may have led to the known chronological disparity of these diasporas, we present results from two different, but equally powerful, analytical tools which are used to examine Polynesian seafaring capabilities and trajectories. The first is a statistical model known as Seascape, which simulates voyages, while the second uses ease of eastward travel estimates based on land distribution and wind pattern analysis. These analyses were done with the goal of determining the potential role of environmental factors in the colonization process, particularly as they relate to the long pause. We show that the eastern boundary of West Polynesia, the limit of the initial colonization pulse, is marked by a discontinuity in land distribution, where the distances travelers would have to cross in order to reach islands further to the east become significantly larger. At the same time, in West Polynesia, the frequency and intensity of winds favorable to eastward displacement decrease continuously from west to east. As far as winds are concerned, eastward travel in West Polynesia is favored in the northern and southern areas and much more difficult across the central portion. Favorable winds have a clear seasonality, and eastward displacement along the northern area is much easier under El Nino conditions. Voyaging simulations show that intentional eastward voyages departing from Tonga and Samoa, when undertaken with vessels capable of sailing efficiently against the wind, afford a viable route toward several island groups in East Polynesia, with trips starting in Samoa having a higher probability of success.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present study was to evaluate the effects of season of the year (summer and winter) and parity (heifers and cows) on oocyte quality and number in buffaloes. For this purpose, 71 buffaloes had follicular wave emergence synchronized before OPU. OPU of all follicles >= 2mm was done 5 days after the beginning of the hormonal protocol, in 4 replicates (two for each season). Data were analyzed by ANOVA using PROC GLIMMIX, in a 2 x 2 factorial arrangement of treatments. No interactions were observed in following variables: number of follicles, number of total and viable oocytes, recovery rate, percentage of viable oocytes, grade I oocytes, grade II oocytes, grade III oocytes, denuded oocytes, expanded cumulus oocytes, and atretic/degenerated oocytes. Number of follicles visualized at OPU and recovery rate were not affected by parity or season. Relative to parity, number of total and viable oocytes were greater in heifers than in cows, respectively. Concerning season of the year, number of viable oocytes and viable oocyte rate were increased in winter. In conclusion, better oocyte quality can be obtained from heifers and during winter in buffaloes. However, the number of total oocytes seems to be more influenced by parity than by season of the year in this species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.
Resumo:
In this paper, we propose a cure rate survival model by assuming the number of competing causes of the event of interest follows the Geometric distribution and the time to event follow a Birnbaum Saunders distribution. We consider a frequentist analysis for parameter estimation of a Geometric Birnbaum Saunders model with cure rate. Finally, to analyze a data set from the medical area. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.
Resumo:
Primary stability of stems in cementless total hip replacements is recognized to play a critical role for long-term survival and thus for the success of the overall surgical procedure. In Literature, several studies addressed this important issue. Different approaches have been explored aiming to evaluate the extent of stability achieved during surgery. Some of these are in-vitro protocols while other tools are coinceived for the post-operative assessment of prosthesis migration relative to the host bone. In vitro protocols reported in the literature are not exportable to the operating room. Anyway most of them show a good overall accuracy. The RSA, EBRA and the radiographic analysis are currently used to check the healing process of the implanted femur at different follow-ups, evaluating implant migration, occurance of bone resorption or osteolysis at the interface. These methods are important for follow up and clinical study but do not assist the surgeon during implantation. At the time I started my Ph.D Study in Bioengineering, only one study had been undertaken to measure stability intra-operatively. No follow-up was presented to describe further results obtained with that device. In this scenario, it was believed that an instrument that could measure intra-operatively the stability achieved by an implanted stem would consistently improve the rate of success. This instrument should be accurate and should give to the surgeon during implantation a quick answer concerning the stability of the implanted stem. With this aim, an intra-operative device was designed, developed and validated. The device is meant to help the surgeon to decide how much to press-fit the implant. It is essentially made of a torsional load cell, able to measure the extent of torque applied by the surgeon to test primary stability, an angular sensor that measure the relative angular displacement between stem and femur, a rigid connector that enable connecting the device to the stem, and all the electronics for signals conditioning. The device was successfully validated in-vitro, showing a good overall accuracy in discriminating stable from unstable implants. Repeatability tests showed that the device was reliable. A calibration procedure was then performed in order to convert the angular readout into a linear displacement measurement, which is an information clinically relevant and simple to read in real-time by the surgeon. The second study reported in my thesis, concerns the evaluation of the possibility to have predictive information regarding the primary stability of a cementless stem, by measuring the micromotion of the last rasp used by the surgeon to prepare the femoral canal. This information would be really useful to the surgeon, who could check prior to the implantation process if the planned stem size can achieve a sufficient degree of primary stability, under optimal press fitting conditions. An intra-operative tool was developed to this aim. It was derived from a previously validated device, which was adapted for the specific purpose. The device is able to measure the relative micromotion between the femur and the rasp, when a torsional load is applied. An in-vitro protocol was developed and validated on both composite and cadaveric specimens. High correlation was observed between one of the parameters extracted form the acquisitions made on the rasp and the stability of the corresponding stem, when optimally press-fitted by the surgeon. After tuning in-vitro the protocol as in a closed loop, verification was made on two hip patients, confirming the results obtained in-vitro and highlighting the independence of the rasp indicator from the bone quality, anatomy and preserving conditions of the tested specimens, and from the sharpening of the rasp blades. The third study is related to an approach that have been recently explored in the orthopaedic community, but that was already in use in other scientific fields. It is based on the vibration analysis technique. This method has been successfully used to investigate the mechanical properties of the bone and its application to evaluate the extent of fixation of dental implants has been explored, even if its validity in this field is still under discussion. Several studies have been published recently on the stability assessment of hip implants by vibration analysis. The aim of the reported study was to develop and validate a prototype device based on the vibration analysis technique to measure intra-operatively the extent of implant stability. The expected advantages of a vibration-based device are easier clinical use, smaller dimensions and minor overall cost with respect to other devices based on direct micromotion measurement. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The fourth study concerns the application of the device based on the vibration analysis technique to several cases, considering both composite and cadaveric specimens. Different degrees of bone quality were tested, as well as different femur anatomies and several levels of press-fitting were considered. The aim of the study was to verify if it is possible to discriminate between stable and quasi-stable implants, because this is the most challenging detection for the surgeon in the operation room. Moreover, it was possible to validate the measurement protocol by comparing the results of the acquisitions made with the vibration-based tool to two reference measurements made by means of a validated technique, and a validated device. The results highlighted that the most sensitive parameter to stability is the shift in resonance frequency of the stem-bone system, showing high correlation with residual micromotion on all the tested specimens. Thus, it seems possible to discriminate between many levels of stability, from the grossly loosened implant, through the quasi-stable implants, to the definitely stable one. Finally, an additional study was performed on a different type of hip prosthesis, which has recently gained great interest thus becoming fairly popular in some countries in the last few years: the hip resurfacing prosthesis. The study was motivated by the following rationale: although bone-prosthesis micromotion is known to influence the stability of total hip replacement, its effect on the outcome of resurfacing implants has not been investigated in-vitro yet, but only clinically. Thus the work was aimed at verifying if it was possible to apply to the resurfacing prosthesis one of the intraoperative devices just validated for the measurement of the micromotion in the resurfacing implants. To do that, a preliminary study was performed in order to evaluate the extent of migration and the typical elastic movement for an epiphyseal prosthesis. An in-vitro procedure was developed to measure micromotions of resurfacing implants. This included a set of in-vitro loading scenarios that covers the range of directions covered by hip resultant forces in the most typical motor-tasks. The applicability of the protocol was assessed on two different commercial designs and on different head sizes. The repeatability and reproducibility were excellent (comparable to the best previously published protocols for standard cemented hip stems). Results showed that the procedure is accurate enough to detect micromotions of the order of few microns. The protocol proposed was thus completely validated. The results of the study demonstrated that the application of an intra-operative device to the resurfacing implants is not necessary, as the typical micromovement associated to this type of prosthesis could be considered negligible and thus not critical for the stabilization process. Concluding, four intra-operative tools have been developed and fully validated during these three years of research activity. The use in the clinical setting was tested for one of the devices, which could be used right now by the surgeon to evaluate the degree of stability achieved through the press-fitting procedure. The tool adapted to be used on the rasp was a good predictor of the stability of the stem. Thus it could be useful for the surgeon while checking if the pre-operative planning was correct. The device based on the vibration technique showed great accuracy, small dimensions, and thus has a great potential to become an instrument appreciated by the surgeon. It still need a clinical evaluation, and must be industrialized as well. The in-vitro tool worked very well, and can be applied for assessing resurfacing implants pre-clinically.
Resumo:
Seyfert galaxies are the closest active galactic nuclei. As such, we can use
them to test the physical properties of the entire class of objects. To investigate
their general properties, I took advantage of different methods of data analysis. In
particular I used three different samples of objects, that, despite frequent overlaps,
have been chosen to best tackle different topics: the heterogeneous BeppoS AX
sample was thought to be optimized to test the average hard X-ray (E above 10 keV)
properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to
compare the properties of low-luminosity sources to the ones of higher luminosity
and, thus, it was also used to test the emission mechanism models; finally, the
XMM–Newton sample was extracted from the X-CfA sample so as to ensure a
truly unbiased and well defined sample of objects to define the average properties
of Seyfert galaxies.
Taking advantage of the broad-band coverage of the BeppoS AX MECS and
PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (
Resumo:
Introduction: Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose clinical features comprise a spectrum of paroxysmal motor manifestations of variable duration and complexity, arising from sleep. Cardiovascular changes during NFLE seizures have previously been observed, however the extent of these modifications and their relationship with seizure onset has not been analyzed in detail. Objective: Aim of present study is to evaluate NFLE seizure related changes in heart rate (HR) and in sympathetic/parasympathetic balance through wavelet analysis of HR variability (HRV). Methods: We evaluated the whole night digitally recorded video-polysomnography (VPSG) of 9 patients diagnosed with NFLE with no history of cardiac disorders and normal cardiac examinations. Events with features of NFLE seizures were selected independently by three examiners and included in the study only if a consensus was reached. Heart rate was evaluated by measuring the interval between two consecutive R-waves of QRS complexes (RRi). RRi series were digitally calculated for a period of 20 minutes, including the seizures and resampled at 10 Hz using cubic spline interpolation. A multiresolution analysis was performed (Daubechies-16 form), and the squared level specific amplitude coefficients were summed across appropriate decomposition levels in order to compute total band powers in bands of interest (LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992). A general linear model was then applied to estimate changes in RRi, LF and HF powers during three different period (Basal) (30 sec, at least 30 sec before seizure onset, during which no movements occurred and autonomic conditions resulted stationary); pre-seizure period (preSP) (10 sec preceding seizure onset) and seizure period (SP) corresponding to the clinical manifestations. For one of the patients (patient 9) three seizures associated with ictal asystole were recorded, hence he was treated separately. Results: Group analysis performed on 8 patients (41 seizures) showed that RRi remained unchanged during the preSP, while a significant tachycardia was observed in the SP. A significant increase in the LF component was instead observed during both the preSP and the SP (p<0.001) while HF component decreased only in the SP (p<0.001). For patient 9 during the preSP and in the first part of SP a significant tachycardia was observed associated with an increased sympathetic activity (increased LF absolute values and LF%). In the second part of the SP a progressive decrease in HR that gradually exceeded basal values occurred before IA. Bradycardia was associated with an increase in parasympathetic activity (increased HF absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. Conclusions: These data suggest that changes in autonomic balance toward a sympathetic prevalence always preceded clinical seizure onset in NFLE, even when HR changes were not yet evident, confirming that wavelet analysis is a sensitive technique to detect sudden variations of autonomic balance occurring during transient phenomena. Finally we demonstrated that epileptic asystole is associated with a parasympathetic hypertonus counteracted by a marked sympathetic activation.
Resumo:
The research interest of this study is to investigate surface immobilization strategies for proteins and other biomolecules by the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) technique. The recrystallization features of the S-layer proteins and the possibility of combining the S-layer lattice arrays with other functional molecules make this protein a prime candidate for supramolecular architectures. The recrystallization behavior on gold or on the secondary cell wall polymer (SCWP) was recorded by SPR. The optical thicknesses and surface densities for different protein layers were calculated. In DNA hybridization tests performed in order to discriminate different mismatches, recombinant S-layer-streptavidin fusion protein matrices showed their potential for new microarrays. Moreover, SCWPs coated gold chips, covered with a controlled and oriented assembly of S-layer fusion proteins, represent an even more sensitive fluorescence testing platform. Additionally, S-layer fusion proteins as the matrix for LHCII immobilization strongly demonstrate superiority over routine approaches, proving the possibility of utilizing them as a new strategy for biomolecular coupling. In the study of the SPFS hCG immunoassay, the biophysical and immunological characteristics of this glycoprotein hormone were presented first. After the investigation of the effect of the biotin thiol dilution on the coupling efficiently, the interfacial binding model including the appropriate binary SAM structure and the versatile streptavidin-biotin interaction was chosen as the basic supramolecular architecture for the fabrication of a SPFS-based immunoassay. Next, the affinity characteristics between different antibodies and hCG were measured via an equilibrium binding analysis, which is the first example for the titration of such a high affinity interaction by SPFS. The results agree very well with the constants derived from the literature. Finally, a sandwich assay and a competitive assay were selected as templates for SPFS-based hCG detection, and an excellent LOD of 0.15 mIU/ml was attained via the “one step” sandwich method. Such high sensitivity not only fulfills clinical requirements, but is also better than most other biosensors. Fully understanding how LHCII complexes transfer the sunlight energy directionally and efficiently to the reaction center is potentially useful for constructing biomimetic devices as solar cells. After the introduction of the structural and the spectroscopic features of LHCII, different surface immobilization strategies of LHCII were summarized next. Among them the strategy based on the His-tag and the immobilized metal (ion) affinity chromatography (IMAC) technique were of great interest and resulted in different kinds of home-fabricated His-tag chelating chips. Their substantial protein coupling capacity, maintenance of high biological activity and a remarkably repeatable binding ability on the same chip after regeneration was demonstrated. Moreover, different parameters related to the stability of surface coupled reconstituted complexes, including sucrose, detergent, lipid, oligomerization, temperature and circulation rate, were evaluated in order to standardize the most effective immobilization conditions. In addition, partial lipid bilayers obtained from LHCII contained proteo-liposomes fusion on the surface were observed by the QCM technique. Finally, the inter-complex energy transfer between neighboring LHCIIs on a gold protected silver surface by excitation with a blue laser (λ = 473nm) was recorded for the first time, and the factors influencing the energy transfer efficiency were evaluated.
Resumo:
PURPOSE: To retrospectively evaluate the midterm patency rate of the nitinol (Viatorr, W.L. Gore and Associates, Flagstaff, Ariz) stent-graft for direct intrahepatic portacaval shunt (DIPS) creation. MATERIALS AND METHODS: Institutional Review Board approval for this retrospective HIPAA-compliant study was obtained with waiver of informed consent. DIPS was created in 18 men and one woman (median age, 54 years; range, 45-65 years) by using nitinol polytetrafluoroethylene (PTFE)-covered stent-grafts. The primary indications were intractable ascites (n = 14), acute variceal bleeding (n = 3), and hydrothorax (n = 2). Follow-up included Doppler ultrasonography at 1, 6, and 12 months and venography with manometry at 6-month intervals after the procedure. Shunt patency and cumulative survival were evaluated by using the Kaplan-Meier method and survival curves were plotted. Differences in mean portosystemic gradients (PSGs) were evaluated by using the Student t test. Multiple regression analysis for survival and DIPS patency were performed for the following parameters: Child-Pugh class, model of end-stage liver disease score, pre- and post-DIPS PSGs, pre-DIPS liver function tests, and pre-DIPS creatinine levels. RESULTS: DIPS creation was successful in all patients. Effective portal decompression and free antegrade shunt flow was achieved in all patients. Intraperitoneal bleeding occurred in one patient during the procedure and was controlled during the same procedure by placing a second nitinol stent-graft. The primary patency rate was 100% at all times during the follow-up period (range, 2 days to 30 months; mean, 256 days; median, 160 days). Flow restrictors were deployed in two (11%) of 19 patients. The 1-year mortality rate was 37% (seven of 19). CONCLUSION: Patency after DIPS creation with the nitinol PTFE-covered stent-graft was superior to that after TIPS with the nitinol stent-graft.
Resumo:
This thesis covers the correction, and verification, development, and implementation of a computational fluid dynamics (CFD) model for an orifice plate meter. Past results were corrected and further expanded on with compressibility effects of acoustic waves being taken into account. One dynamic pressure difference transducer measures the time-varying differential pressure across the orifice meter. A dynamic absolute pressure measurement is also taken at the inlet of the orifice meter, along with a suitable temperature measurement of the mean flow gas. Together these three measurements allow for an incompressible CFD simulation (using a well-tested and robust model) for the cross-section independent time-varying mass flow rate through the orifice meter. The mean value of this incompressible mass flow rate is then corrected to match the mean of the measured flow rate( obtained from a Coriolis meter located up stream of the orifice meter). Even with the mean and compressibility corrections, significant differences in the measured mass flow rates at two orifice meters in a common flow stream were observed. This means that the compressibility effects associated with pulsatile gas flows is significant in the measurement of the time-varying mass flow rate. Future work (with the approach and initial runs covered here) will provide an indirect verification of the reported mass flow rate measurements.