931 resultados para Control system analysis
Resumo:
O presente trabalho, subordinado à temática “Comando e Controlo na Artilharia Antiaérea”, pretende problematizar algumas das questões mais recentes relativas a matérias de segurança e defesa, fruto dos mais recentes acontecimentos. Por exemplo, refira-se o abate do voo comercial na Ucrânia, entre outros inúmeros casos que se constituem como fatores que levam a questionar a capacidade de defesa dos Estados face ao fácil acesso e baixo custo destes meios, à mercê de pessoas/organizações criminosas e terroristas. Assim, é premente a necessidade de aquisição, por parte dos Estados, nomeadamente de Portugal, de uma Artilharia mais robusta e com um sistema de Comando e Controlo automático capaz de combater as potenciais e prováveis ameaças aéreas. Esta investigação pretende, então, analisar o atual sistema de Comando e Controlo da Artilharia Antiaérea nacional, por forma a identificar as suas capacidades e, em paralelo, as suas vulnerabilidades. Concomitantemente pretende-se analisar o sistema perante as ameaças aéreas e as operações que deverá executar no âmbito dos compromissos internacionais, com o objetivo fulcral de identificar prováveis potencialidades que deverão integrar o referido sistema. Pretende-se, deste modo, propor uma revisão do atual sistema no sentido de colmatar as suas prováveis lacunas e capacitando-o para uma resposta eficaz e efetiva perante eventuais ameaças, na esteira dos compromissos internacionais. No início apresentamos uma ‘revisão de literatura’ para que o leitor se familiarize com os conceitos e nomenclatura em uso nesta reflexão. Subsequentemente, expõe-se a metodologia empregue e são abordados os sistemas de Defesa Aérea e de Artilharia Antiaérea e, posteriormente, o Comando e Controlo. De seguida, apresenta-se uma análise possível dos dados provenientes das entrevistas executadas. Baseando-nos na investigação realizada, conclui-se que a Artilharia Antiaérea corre o risco sério de não dispor de capacidade de defesa, a baixa e muito baixa altitude, se não forem adquiridos rapidamente os materiais imprescindíveis para que os sistemas possam cabalmente atuar.
Resumo:
Um dos efeitos da digitalização do campo de batalha é o uso intensivo de novas tecnologias ao nível tático, de forma a agilizar a gestão e facilitar a compreensão do mesmo, com objetivo de contribuir decisivamente para a obtenção da superioridade de informação durante a condução das operações militares, assumindo particular relevância nesta temática a utilização de sistemas de informação para o comando e controlo. Observando a crescente importância destes sistemas para os exércitos, em particular para os baixos escalões, o presente trabalho, com o tema “Informações, Vigilância e Reconhecimento: Contributo para as Funções de Combate Comando-Missão e Informações”, estuda e analisa o papel dos dados, notícias e informações nessas funções de combate, bem como a sua relação com os sistemas de informação para o comando e controlo. São estudados e definidos os conceitos considerados base para a investigação, à luz da doutrina nacional e NATO, constituindo um suporte essencial para o estudo de sistemas de informação para o comando e controlo utilizados no exército norte-americano (com arquitetura de sistemas considerada como referência nos desenvolvimentos em curso no nosso exército) e para a análise dos sistemas de informação para o comando e controlo utilizados atualmente no Exército Português nas suas forças de manobra, com foco nos baixos escalões, abordando o que se encontra igualmente em desenvolvimento. Do estudo realizado determinaram-se uma série de requisitos operacionais, passíveis de serem integrados num sistema de informação para o comando e controlo de baixos escalões; verificou-se que tipo de dados e notícias eram recolhidos das viaturas utilizadas pela unidade em estudo, neste caso o Grupo de Reconhecimento da Brigada de Intervenção; e relacionaram-se os dados, notícias, informações e funcionalidades presentes com as variáveis de missão e, posteriormente, às funções de combate Comando-Missão e Informações.
Resumo:
It is remarkable that there are no deployed military hybrid vehicles since battlefield fuel is approximately 100 times the cost of civilian fuel. In the commercial marketplace, where fuel prices are much lower, electric hybrid vehicles have become increasingly common due to their increased fuel efficiency and the associated operating cost benefit. An absence of military hybrid vehicles is not due to a lack of investment in research and development, but rather because applying hybrid vehicle architectures to a military application has unique challenges. These challenges include inconsistent duty cycles for propulsion requirements and the absence of methods to look at vehicle energy in a holistic sense. This dissertation provides a remedy to these challenges by presenting a method to quantify the benefits of a military hybrid vehicle by regarding that vehicle as a microgrid. This innovative concept allowed for the creation of an expandable multiple input numerical optimization method that was implemented for both real-time control and system design optimization. An example of each of these implementations was presented. Optimization in the loop using this new method was compared to a traditional closed loop control system and proved to be more fuel efficient. System design optimization using this method successfully illustrated battery size optimization by iterating through various electric duty cycles. By utilizing this new multiple input numerical optimization method, a holistic view of duty cycle synthesis, vehicle energy use, and vehicle design optimization can be achieved.
Resumo:
This thesis presents a load sharing method applied in a distributed micro grid system. The goal of this method is to balance the state-of-charge (SoC) of each parallel connected battery and make it possible to detect the average SoC of the system by measuring bus voltage for all connected modules. In this method the reference voltage for each battery converter is adjusted by adding a proportional SoC factor. Under such setting the battery with a higher SoC will output more power, whereas the one with lower SoC gives out less. Therefore the higher SoC battery will use its energy faster than the lower ones, and eventually the SoC and output power of each battery will converge. And because the reference voltage is related to SoC status, the information of the average SoC in this system could be shared for all modules by measuring bus voltage. The SoC balancing speed is related to the SoC droop factors. This SoC-based load sharing control system is analyzed in feasibility and stability. Simulations in MATLAB/Simulink are presented, which indicate that this control scheme could balance the battery SoCs as predicted. The observation of SoC sharing through bus voltage was validated in both software simulation and hardware experiments. It could be of use to non-communicated distributed power system in load shedding and power planning.
Resumo:
Climate change, intensive use, and population growth are threatening the availability of water resources. New sources of water, better knowledge of existing ones, and improved water management strategies are of paramount importance. Ground water is often considered as primary water source due to its advantages in terms of quantity, spatial distribution, and natural quality. Remote sensing techniques afford scientists a unique opportunity to characterize landscapes in order to assess groundwater resources, particularly in tectonically influenced areas. Aquifers in volcanic basins are considered the most productive aquifers in Latin America. Although topography is considered the primary driving force for groundwater flows in mountainous terrains, tectonic activity increases the complexity of these groundwater systems by altering the integrity of sedimentary rock units and the overlying drainage networks. Structural controls affect the primary hydraulic properties of the rock formations by developing barriers to flow in some cases and zones of preferential infiltration and subterranean in others. The study area focuses on the Quito Aquifer System (QAS) in Ecuador. The characterization of the hydrogeology started with a lineament analysis based on a combined remote sensing and digital terrain analysis approach. The application of classical tools for regional hydrogeological evaluation and shallow geophysical methods were useful to evaluate the impact of faulting and fracturing on the aquifer system. Given the spatial extension of the area and the complexity of the system, two levels of analysis were applied in this study. At the regional level, a lineament map was created for the QAS. Relationships between fractures, faults and lineaments and the configuration of the groundwater flow on the QAS were determined. At the local level, on the Plateaus region of the QAS, a detailed lineament map was obtained by using high-spatial-resolution satellite imagery and aspect map derived from a digital elevation model (DEM). This map was complemented by the analysis of morphotectonic indicators and shallow geophysics that characterize fracture patterns. The development of the groundwater flow system was studied, drawing upon data pertaining to the aquifer system physical characteristics and topography. Hydrochemistry was used to ascertain the groundwater evolution and verify the correspondence of the flow patterns proposed in the flow system analysis. Isotopic analysis was employed to verify the origin of groundwater. The results of this study show that tectonism plays a very important role for the hydrology of the QAS. The results also demonstrate that faults influence a great deal of the topographic characteristics of the QAS and subsequently the configuration of the groundwater flow. Moreover, for the Plateaus region, the results demonstrate that the aquifer flow systems are affected by secondary porosity. This is a new conceptualization of the functioning of the aquifers on the QAS that will significantly contribute to the development of better strategies for the management of this important water resource.
Resumo:
En 1991 Colombia presenció la promulgación de una nueva Carta Política que trajo consigo renovadoras esperanzas y generó expectativas muy altas. La presente investigación examina y analiza las transformaciones y limitaciones de los sistemas de control sobre la Hacienda Pública, propuestos por esta nueva Constitución. En este sentido, se caracteriza y se cuestiona el funcionamiento del nuevo sistema de control fiscal, del sistema de control político y finalmente del sistema de control económico y financiero. Los resultados de este trabajo son reflexiones a propósito de las fallas que han dilucidado estos sistemas desde su implementación, y fueron posibles gracias a la revisión sistemática de informes institucionales, documentos académicos y trabajo de campo con los funcionarios de las entidades a cargo del control.
Resumo:
This manuscript reports the overall development of a Ph.D. research project during the “Mechanics and advanced engineering sciences” course at the Department of Industrial Engineering of the University of Bologna. The project is focused on the development of a combustion control system for an innovative Spark Ignited engine layout. In details, the controller is oriented to manage a prototypal engine equipped with a Port Water Injection system. The water injection technology allows an increment of combustion efficiency due to the knock mitigation effect that permits to keep the combustion phasing closer to the optimal position with respect to the traditional layout. At the beginning of the project, the effects and the possible benefits achievable by water injection have been investigated by a focused experimental campaign. Then the data obtained by combustion analysis have been processed to design a control-oriented combustion model. The model identifies the correlation between Spark Advance, combustion phasing and injected water mass, and two different strategies are presented, both based on an analytic and semi-empirical approach and therefore compatible with a real-time application. The model has been implemented in a combustion controller that manages water injection to reach the best achievable combustion efficiency while keeping knock levels under a pre-established threshold. Three different versions of the algorithm are described in detail. This controller has been designed and pre-calibrated in a software-in-the-loop environment and later an experimental validation has been performed with a rapid control prototyping approach to highlight the performance of the system on real set-up. To further make the strategy implementable on an onboard application, an estimation algorithm of combustion phasing, necessary for the controller, has been developed during the last phase of the PhD Course, based on accelerometric signals.
Resumo:
The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.
Resumo:
The topic of this thesis is the design and the implementation of mathematical models and control system algorithms for rotary-wing unmanned aerial vehicles to be used in cooperative scenarios. The use of rotorcrafts has many attractive advantages, since these vehicles have the capability to take-off and land vertically, to hover and to move backward and laterally. Rotary-wing aircraft missions require precise control characteristics due to their unstable and heavy coupling aspects. As a matter of fact, flight test is the most accurate way to evaluate flying qualities and to test control systems. However, it may be very expensive and/or not feasible in case of early stage design and prototyping. A good compromise is made by a preliminary assessment performed by means of simulations and a reduced flight testing campaign. Consequently, having an analytical framework represents an important stage for simulations and control algorithm design. In this work mathematical models for various helicopter configurations are implemented. Different flight control techniques for helicopters are presented with theoretical background and tested via simulations and experimental flight tests on a small-scale unmanned helicopter. The same platform is used also in a cooperative scenario with a rover. Control strategies, algorithms and their implementation to perform missions are presented for two main scenarios. One of the main contributions of this thesis is to propose a suitable control system made by a classical PID baseline controller augmented with L1 adaptive contribution. In addition a complete analytical framework and the study of the dynamics and the stability of a synch-rotor are provided. At last, the implementation of cooperative control strategies for two main scenarios that include a small-scale unmanned helicopter and a rover.
Resumo:
This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.
Resumo:
Massive Internet of Things is expected to play a crucial role in Beyond 5G (B5G) wireless communication systems, offering seamless connectivity among heterogeneous devices without human intervention. However, the exponential proliferation of smart devices and IoT networks, relying solely on terrestrial networks, may not fully meet the demanding IoT requirements in terms of bandwidth and connectivity, especially in areas where terrestrial infrastructures are not economically viable. To unleash the full potential of 5G and B5G networks and enable seamless connectivity everywhere, the 3GPP envisions the integration of Non-Terrestrial Networks (NTNs) into the terrestrial ones starting from Release 17. However, this integration process requires modifications to the 5G standard to ensure reliable communications despite typical satellite channel impairments. In this framework, this thesis aims at proposing techniques at the Physical and Medium Access Control layers that require minimal adaptations in the current NB-IoT standard via NTN. Thus, firstly the satellite impairments are evaluated and, then, a detailed link budget analysis is provided. Following, analyses at the link and the system levels are conducted. In the former case, a novel algorithm leveraging time-frequency analysis is proposed to detect orthogonal preambles and estimate the signals’ arrival time. Besides, the effects of collisions on the detection probability and Bit Error Rate are investigated and Non-Orthogonal Multiple Access approaches are proposed in the random access and data phases. The system analysis evaluates the performance of random access in case of congestion. Various access parameters are tested in different satellite scenarios, and the performance is measured in terms of access probability and time required to complete the procedure. Finally, a heuristic algorithm is proposed to jointly design the access and data phases, determining the number of satellite passages, the Random Access Periodicity, and the number of uplink repetitions that maximize the system's spectral efficiency.
Resumo:
In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.
Resumo:
Nowadays, the development of intelligent and autonomous vehicles used to perform agricultural activities is essential to improve quantity and quality of agricultural productions. Moreover, with automation techniques it is possible to reduce the usage of agrochemicals and minimize the pollution. The University of Bologna is developing an innovative system for orchard management called ORTO (Orchard Rapid Transportation System). This system involves an autonomous electric vehicle capable to perform agricultural activities inside an orchard structure. The vehicle is equipped with an implement capable to perform different tasks. The purpose of this thesis project is to control the vehicle and the implement to perform an inter-row grass mowing. This kind of task requires a synchronized motion between the traction motors and the implement motors. A motion control system has been developed to generate trajectories and manage their synchronization. Two main trajectories type have been used: a five order polynomial trajectory and a trapezoidal trajectory. These two kinds of trajectories have been chosen in order to perform a uniform grass mowing, paying a particular attention to the constrains of the system. To synchronize the motions, the electronic cams approach has been adopted. A master profile has been generated and all the trajectories have been linked to the master motion. Moreover, a safety system has been developed. The aim of this system is firstly to improve the safety during the motion, furthermore it allows to manage obstacle detection and avoidance. Using some particular techniques obstacles can be detected and recovery action can be performed to overcome the problem. Once the measured force reaches the predefined force threshold, then the vehicle stops immediately its motion. The whole project has been developed by employing Matlab and Simulink. Eventually, the software has been translated into C code and executed on the TI Lauchpad XL board.
Resumo:
In this thesis, the problem of controlling a quadrotor UAV is considered. It is done by presenting an original control system, designed as a combination of Neural Networks and Disturbance Observer, using a composite learning approach for a system of the second order, which is a novel methodology in literature. After a brief introduction about the quadrotors, the concepts needed to understand the controller are presented, such as the main notions of advanced control, the basic structure and design of a Neural Network, the modeling of a quadrotor and its dynamics. The full simulator, developed on the MATLAB Simulink environment, used throughout the whole thesis, is also shown. For the guidance and control purposes, a Sliding Mode Controller, used as a reference, it is firstly introduced, and its theory and implementation on the simulator are illustrated. Finally the original controller is introduced, through its novel formulation, and implementation on the model. The effectiveness and robustness of the two controllers are then proven by extensive simulations in all different conditions of external disturbance and faults.
Resumo:
In this thesis the design of a pressure regulation system for space propulsion engines (electric and cold gas) has been performed. The Bang-Bang Control (BBC) method has been implemented through the open/close command on a solenoid valve, and the mass flow rate of the propellant has been fixed with suitable flow restrictors. At the beginning, research for the comparison between mechanical and electronic (for BBC) pressure regulators has been performed, which resulted in enough advantages for the selection of the second valve type. The major advantage is about the possibility to have a variable outlet pressure with a variable inlet pressure through a simple remote command, while in mechanical pressure regulators the ratio between inlet and outlet pressures must be mechanically settled. Different pressure control schemes have been analyzed, changing number of solenoid valves, flow restrictors and plenums. For each scheme the valve’s frequencies were evaluated with simplified mathematical models and with the use of simulators implemented on Python; the results obtained from those two methods matched quiet well. From all the schemes it was possible to observe varying frequency and duty cycle, for changes in different parameters. This results, after experimental checks, can be used to design the control system for a given total number of cycles that a specific solenoid valve can guarantee. Finally, tests were performed and it was possible to verify the goodness of the control system. Moreover from the tests it was possible to deduce some tips in order to optimize the running of the simulator.