885 resultados para Context data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conception of IoT (Internet of Things) is accepted as the future tendency of Internet among academia and industry. It will enable people and things to be connected at anytime and anyplace, with anything and anyone. IoT has been proposed to be applied into many areas such as Healthcare, Transportation,Logistics, and Smart environment etc. However, this thesis emphasizes on the home healthcare area as it is the potential healthcare model to solve many problems such as the limited medical resources, the increasing demands for healthcare from elderly and chronic patients which the traditional model is not capable of. A remarkable change in IoT in semantic oriented vision is that vast sensors or devices are involved which could generate enormous data. Methods to manage the data including acquiring, interpreting, processing and storing data need to be implemented. Apart from this, other abilities that IoT is not capable of are concluded, namely, interoperation, context awareness and security & privacy. Context awareness is an emerging technology to manage and take advantage of context to enable any type of system to provide personalized services. The aim of this thesis is to explore ways to facilitate context awareness in IoT. In order to realize this objective, a preliminary research is carried out in this thesis. The most basic premise to realize context awareness is to collect, model, understand, reason and make use of context. A complete literature review for the existing context modelling and context reasoning techniques is conducted. The conclusion is that the ontology-based context modelling and ontology-based context reasoning are the most promising and efficient techniques to manage context. In order to fuse ontology into IoT, a specific ontology-based context awareness framework is proposed for IoT applications. In general, the framework is composed of eight components which are hardware, UI (User Interface), Context modelling, Context fusion, Context reasoning, Context repository, Security unit and Context dissemination. Moreover, on the basis of TOVE (Toronto Virtual Enterprise), a formal ontology developing methodology is proposed and illustrated which consists of four stages: Specification & Conceptualization, Competency Formulation, Implementation and Validation & Documentation. In addition, a home healthcare scenario is elaborated by listing its well-defined functionalities. Aiming at representing this specific scenario, the proposed ontology developing methodology is applied and the ontology-based model is developed in a free and open-source ontology editor called Protégé. Finally, the accuracy and completeness of the proposed ontology are validated to show that this proposed ontology is able to accurately represent the scenario of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although context could be exploited to improve performance, elasticity and adaptation in most distributed systems that adopt the publish/subscribe (P/S) communication model, only a few researchers have focused on the area of context-aware matching in P/S systems and have explored its implications in domains with highly dynamic context like wireless sensor networks (WSNs) and IoT-enabled applications. Most adopted P/S models are context agnostic or do not differentiate context from the other application data. In this article, we present a novel context-aware P/S model. SilboPS manages context explicitly, focusing on the minimization of network overhead in domains with recurrent context changes related, for example, to mobile ad hoc networks (MANETs). Our approach represents a solution that helps to efficiently share and use sensor data coming from ubiquitous WSNs across a plethora of applications intent on using these data to build context awareness. Specifically, we empirically demonstrate that decoupling a subscription from the changing context in which it is produced and leveraging contextual scoping in the filtering process notably reduces (un)subscription cost per node, while improving the global performance/throughput of the network of brokers without fltering the cost of SIENA-like topology changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La computación ubicua está extendiendo su aplicación desde entornos específicos hacia el uso cotidiano; el Internet de las cosas (IoT, en inglés) es el ejemplo más brillante de su aplicación y de la complejidad intrínseca que tiene, en comparación con el clásico desarrollo de aplicaciones. La principal característica que diferencia la computación ubicua de los otros tipos está en como se emplea la información de contexto. Las aplicaciones clásicas no usan en absoluto la información de contexto o usan sólo una pequeña parte de ella, integrándola de una forma ad hoc con una implementación específica para la aplicación. La motivación de este tratamiento particular se tiene que buscar en la dificultad de compartir el contexto con otras aplicaciones. En realidad lo que es información de contexto depende del tipo de aplicación: por poner un ejemplo, para un editor de imágenes, la imagen es la información y sus metadatos, tales como la hora de grabación o los ajustes de la cámara, son el contexto, mientras que para el sistema de ficheros la imagen junto con los ajustes de cámara son la información, y el contexto es representado por los metadatos externos al fichero como la fecha de modificación o la de último acceso. Esto significa que es difícil compartir la información de contexto, y la presencia de un middleware de comunicación que soporte el contexto de forma explícita simplifica el desarrollo de aplicaciones para computación ubicua. Al mismo tiempo el uso del contexto no tiene que ser obligatorio, porque si no se perdería la compatibilidad con las aplicaciones que no lo usan, convirtiendo así dicho middleware en un middleware de contexto. SilboPS, que es nuestra implementación de un sistema publicador/subscriptor basado en contenido e inspirado en SIENA [11, 9], resuelve dicho problema extendiendo el paradigma con dos elementos: el Contexto y la Función de Contexto. El contexto representa la información contextual propiamente dicha del mensaje por enviar o aquella requerida por el subscriptor para recibir notificaciones, mientras la función de contexto se evalúa usando el contexto del publicador y del subscriptor. Esto permite desacoplar la lógica de gestión del contexto de aquella de la función de contexto, incrementando de esta forma la flexibilidad de la comunicación entre varias aplicaciones. De hecho, al utilizar por defecto un contexto vacío, las aplicaciones clásicas y las que manejan el contexto pueden usar el mismo SilboPS, resolviendo de esta forma la incompatibilidad entre las dos categorías. En cualquier caso la posible incompatibilidad semántica sigue existiendo ya que depende de la interpretación que cada aplicación hace de los datos y no puede ser solucionada por una tercera parte agnóstica. El entorno IoT conlleva retos no sólo de contexto, sino también de escalabilidad. La cantidad de sensores, el volumen de datos que producen y la cantidad de aplicaciones que podrían estar interesadas en manipular esos datos está en continuo aumento. Hoy en día la respuesta a esa necesidad es la computación en la nube, pero requiere que las aplicaciones sean no sólo capaces de escalar, sino de hacerlo de forma elástica [22]. Desgraciadamente no hay ninguna primitiva de sistema distribuido de slicing que soporte un particionamiento del estado interno [33] junto con un cambio en caliente, además de que los sistemas cloud actuales como OpenStack u OpenNebula no ofrecen directamente una monitorización elástica. Esto implica que hay un problema bilateral: cómo puede una aplicación escalar de forma elástica y cómo monitorizar esa aplicación para saber cuándo escalarla horizontalmente. E-SilboPS es la versión elástica de SilboPS y se adapta perfectamente como solución para el problema de monitorización, gracias al paradigma publicador/subscriptor basado en contenido y, a diferencia de otras soluciones [5], permite escalar eficientemente, para cumplir con la carga de trabajo sin sobre-provisionar o sub-provisionar recursos. Además está basado en un algoritmo recientemente diseñado que muestra como añadir elasticidad a una aplicación con distintas restricciones sobre el estado: sin estado, estado aislado con coordinación externa y estado compartido con coordinación general. Su evaluación enseña como se pueden conseguir notables speedups, siendo el nivel de red el principal factor limitante: de hecho la eficiencia calculada (ver Figura 5.8) demuestra cómo se comporta cada configuración en comparación con las adyacentes. Esto permite conocer la tendencia actual de todo el sistema, para saber si la siguiente configuración compensará el coste que tiene con la ganancia que lleva en el throughput de notificaciones. Se tiene que prestar especial atención en la evaluación de los despliegues con igual coste, para ver cuál es la mejor solución en relación a una carga de trabajo dada. Como último análisis se ha estimado el overhead introducido por las distintas configuraciones a fin de identificar el principal factor limitante del throughput. Esto ayuda a determinar la parte secuencial y el overhead de base [26] en un despliegue óptimo en comparación con uno subóptimo. Efectivamente, según el tipo de carga de trabajo, la estimación puede ser tan baja como el 10 % para un óptimo local o tan alta como el 60 %: esto ocurre cuando se despliega una configuración sobredimensionada para la carga de trabajo. Esta estimación de la métrica de Karp-Flatt es importante para el sistema de gestión porque le permite conocer en que dirección (ampliar o reducir) es necesario cambiar el despliegue para mejorar sus prestaciones, en lugar que usar simplemente una política de ampliación. ABSTRACT The application of pervasive computing is extending from field-specific to everyday use. The Internet of Things (IoT) is the shiniest example of its application and of its intrinsic complexity compared with classical application development. The main characteristic that differentiates pervasive from other forms of computing lies in the use of contextual information. Some classical applications do not use any contextual information whatsoever. Others, on the other hand, use only part of the contextual information, which is integrated in an ad hoc fashion using an application-specific implementation. This information is handled in a one-off manner because of the difficulty of sharing context across applications. As a matter of fact, the application type determines what the contextual information is. For instance, for an imaging editor, the image is the information and its meta-data, like the time of the shot or camera settings, are the context, whereas, for a file-system application, the image, including its camera settings, is the information and the meta-data external to the file, like the modification date or the last accessed timestamps, constitute the context. This means that contextual information is hard to share. A communication middleware that supports context decidedly eases application development in pervasive computing. However, the use of context should not be mandatory; otherwise, the communication middleware would be reduced to a context middleware and no longer be compatible with non-context-aware applications. SilboPS, our implementation of content-based publish/subscribe inspired by SIENA [11, 9], solves this problem by adding two new elements to the paradigm: the context and the context function. Context represents the actual contextual information specific to the message to be sent or that needs to be notified to the subscriber, whereas the context function is evaluated using the publisher’s context and the subscriber’s context to decide whether the current message and context are useful for the subscriber. In this manner, context logic management is decoupled from context management, increasing the flexibility of communication and usage across different applications. Since the default context is empty, context-aware and classical applications can use the same SilboPS, resolving the syntactic mismatch that there is between the two categories. In any case, the possible semantic mismatch is still present because it depends on how each application interprets the data, and it cannot be resolved by an agnostic third party. The IoT environment introduces not only context but scaling challenges too. The number of sensors, the volume of the data that they produce and the number of applications that could be interested in harvesting such data are growing all the time. Today’s response to the above need is cloud computing. However, cloud computing applications need to be able to scale elastically [22]. Unfortunately there is no slicing, as distributed system primitives that support internal state partitioning [33] and hot swapping and current cloud systems like OpenStack or OpenNebula do not provide elastic monitoring out of the box. This means there is a two-sided problem: 1) how to scale an application elastically and 2) how to monitor the application and know when it should scale in or out. E-SilboPS is the elastic version of SilboPS. I t is the solution for the monitoring problem thanks to its content-based publish/subscribe nature and, unlike other solutions [5], it scales efficiently so as to meet workload demand without overprovisioning or underprovisioning. Additionally, it is based on a newly designed algorithm that shows how to add elasticity in an application with different state constraints: stateless, isolated stateful with external coordination and shared stateful with general coordination. Its evaluation shows that it is able to achieve remarkable speedups where the network layer is the main limiting factor: the calculated efficiency (see Figure 5.8) shows how each configuration performs with respect to adjacent configurations. This provides insight into the actual trending of the whole system in order to predict if the next configuration would offset its cost against the resulting gain in notification throughput. Particular attention has been paid to the evaluation of same-cost deployments in order to find out which one is the best for the given workload demand. Finally, the overhead introduced by the different configurations has been estimated to identify the primary limiting factor for throughput. This helps to determine the intrinsic sequential part and base overhead [26] of an optimal versus a suboptimal deployment. Depending on the type of workload, this can be as low as 10% in a local optimum or as high as 60% when an overprovisioned configuration is deployed for a given workload demand. This Karp-Flatt metric estimation is important for system management because it indicates the direction (scale in or out) in which the deployment has to be changed in order to improve its performance instead of simply using a scale-out policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet está evolucionando hacia la conocida como Live Web. En esta nueva etapa en la evolución de Internet, se pone al servicio de los usuarios multitud de streams de datos sociales. Gracias a estas fuentes de datos, los usuarios han pasado de navegar por páginas web estáticas a interacturar con aplicaciones que ofrecen contenido personalizado, basada en sus preferencias. Cada usuario interactúa a diario con multiples aplicaciones que ofrecen notificaciones y alertas, en este sentido cada usuario es una fuente de eventos, y a menudo los usuarios se sienten desbordados y no son capaces de procesar toda esa información a la carta. Para lidiar con esta sobresaturación, han aparecido múltiples herramientas que automatizan las tareas más habituales, desde gestores de bandeja de entrada, gestores de alertas en redes sociales, a complejos CRMs o smart-home hubs. La contrapartida es que aunque ofrecen una solución a problemas comunes, no pueden adaptarse a las necesidades de cada usuario ofreciendo una solucion personalizada. Los Servicios de Automatización de Tareas (TAS de sus siglas en inglés) entraron en escena a partir de 2012 para dar solución a esta liminación. Dada su semejanza, estos servicios también son considerados como un nuevo enfoque en la tecnología de mash-ups pero centra en el usuarios. Los usuarios de estas plataformas tienen la capacidad de interconectar servicios, sensores y otros aparatos con connexión a internet diseñando las automatizaciones que se ajustan a sus necesidades. La propuesta ha sido ámpliamante aceptada por los usuarios. Este hecho ha propiciado multitud de plataformas que ofrecen servicios TAS entren en escena. Al ser un nuevo campo de investigación, esta tesis presenta las principales características de los TAS, describe sus componentes, e identifica las dimensiones fundamentales que los defines y permiten su clasificación. En este trabajo se acuña el termino Servicio de Automatización de Tareas (TAS) dando una descripción formal para estos servicios y sus componentes (llamados canales), y proporciona una arquitectura de referencia. De igual forma, existe una falta de herramientas para describir servicios de automatización, y las reglas de automatización. A este respecto, esta tesis propone un modelo común que se concreta en la ontología EWE (Evented WEb Ontology). Este modelo permite com parar y equiparar canales y automatizaciones de distintos TASs, constituyendo un aporte considerable paraa la portabilidad de automatizaciones de usuarios entre plataformas. De igual manera, dado el carácter semántico del modelo, permite incluir en las automatizaciones elementos de fuentes externas sobre los que razonar, como es el caso de Linked Open Data. Utilizando este modelo, se ha generado un dataset de canales y automatizaciones, con los datos obtenidos de algunos de los TAS existentes en el mercado. Como último paso hacia el lograr un modelo común para describir TAS, se ha desarrollado un algoritmo para aprender ontologías de forma automática a partir de los datos del dataset. De esta forma, se favorece el descubrimiento de nuevos canales, y se reduce el coste de mantenimiento del modelo, el cual se actualiza de forma semi-automática. En conclusión, las principales contribuciones de esta tesis son: i) describir el estado del arte en automatización de tareas y acuñar el término Servicio de Automatización de Tareas, ii) desarrollar una ontología para el modelado de los componentes de TASs y automatizaciones, iii) poblar un dataset de datos de canales y automatizaciones, usado para desarrollar un algoritmo de aprendizaje automatico de ontologías, y iv) diseñar una arquitectura de agentes para la asistencia a usuarios en la creación de automatizaciones. ABSTRACT The new stage in the evolution of the Web (the Live Web or Evented Web) puts lots of social data-streams at the service of users, who no longer browse static web pages but interact with applications that present them contextual and relevant experiences. Given that each user is a potential source of events, a typical user often gets overwhelmed. To deal with that huge amount of data, multiple automation tools have emerged, covering from simple social media managers or notification aggregators to complex CRMs or smart-home Hub/Apps. As a downside, they cannot tailor to the needs of every single user. As a natural response to this downside, Task Automation Services broke in the Internet. They may be seen as a new model of mash-up technology for combining social streams, services and connected devices from an end-user perspective: end-users are empowered to connect those stream however they want, designing the automations they need. The numbers of those platforms that appeared early on shot up, and as a consequence the amount of platforms following this approach is growing fast. Being a novel field, this thesis aims to shed light on it, presenting and exemplifying the main characteristics of Task Automation Services, describing their components, and identifying several dimensions to classify them. This thesis coins the term Task Automation Services (TAS) by providing a formal definition of them, their components (called channels), as well a TAS reference architecture. There is also a lack of tools for describing automation services and automations rules. In this regard, this thesis proposes a theoretical common model of TAS and formalizes it as the EWE ontology This model enables to compare channels and automations from different TASs, which has a high impact in interoperability; and enhances automations providing a mechanism to reason over external sources such as Linked Open Data. Based on this model, a dataset of components of TAS was built, harvesting data from the web sites of actual TASs. Going a step further towards this common model, an algorithm for categorizing them was designed, enabling their discovery across different TAS. Thus, the main contributions of the thesis are: i) surveying the state of the art on task automation and coining the term Task Automation Service; ii) providing a semantic common model for describing TAS components and automations; iii) populating a categorized dataset of TAS components, used to learn ontologies of particular domains from the TAS perspective; and iv) designing an agent architecture for assisting users in setting up automations, that is aware of their context and acts in consequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Context aware applications, which can adapt their behaviors to changing environments, are attracting more and more attention. To simplify the complexity of developing applications, context aware middleware, which introduces context awareness into the traditional middleware, is highlighted to provide a homogeneous interface involving generic context management solutions. This paper provides a survey of state-of-the-art context aware middleware architectures proposed during the period from 2009 through 2015. First, a preliminary background, such as the principles of context, context awareness, context modelling, and context reasoning, is provided for a comprehensive understanding of context aware middleware. On this basis, an overview of eleven carefully selected middleware architectures is presented and their main features explained. Then, thorough comparisons and analysis of the presented middleware architectures are performed based on technical parameters including architectural style, context abstraction, context reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security & privacy, context awareness level, and cloud-based big data analytics. The analysis shows that there is actually no context aware middleware architecture that complies with all requirements. Finally, challenges are pointed out as open issues for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcriptional activation potential of proteins can be assayed in chimeras containing a heterologous DNA-binding domain that mediates their recruitment to reporter genes. This approach has been widely used in yeast and in transient mammalian cell assays. Here, we applied it to assay the transactivation potential of proteins in transgenic Drosophila embryos. We found that a chimera between the DNA-binding bacterial LexA protein and the transactivation domain from yeast GAL4 behaved as a potent synthetic activator in all embryonic tissues. In contrast, a LexA chimera containing Drosophila Fos (Dfos) required an unexpected degree of context to function as a transcriptional activator. We provide evidence to suggest that this context is provided by Djun and Mad (a Drosophila Smad), and that these partner factors need to be activated by signaling from Jun N-terminal kinase and decapentaplegic, respectively. Because Dfos behaves as an autonomous transcriptional activator in more artificial assays systems, our data suggest that context-dependence of transcription factors may be more prevalent than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experiments have exposed significant discrepancies between experimental data and predictive models for DNA structure. These results strongly suggest that DNA structural parameters incorporated in the models are not always sufficient to account for the influence of sequence context and of specific ion effects. In an attempt to evaluate these two effects, we have investigated repetitive DNA sequences with the sequence motif GAGAG.CTCTC located in different helical phasing arrangements with respect to poly(A) tracts and GGGCCC.GGGCCC sequence motifs. Methods used are ligase-mediated cyclization and gel mobility experiments along with DNase I cutting and chemical probe studies. The results provide new evidence for curvature in poly(A) tracts. They also show that the sequence context in which bending and flexible sequence elements are found is an important aspect of sequence-dependent DNA conformation. Although dinucleotide models generally have good predictive power, this work demonstrates that in some instances sequence elements larger than the dinucleotide must be taken into account, and hence it provides a starting point for the appropriate modification and refinement of existing structural models for DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Internet das Coisas é um novo paradigma de comunicação que estende o mundo virtual (Internet) para o mundo real com a interface e interação entre objetos. Ela possuirá um grande número de dispositivos heteregôneos interconectados, que deverá gerar um grande volume de dados. Um dos importantes desafios para seu desenvolvimento é se guardar e processar esse grande volume de dados em aceitáveis intervalos de tempo. Esta pesquisa endereça esse desafio, com a introdução de serviços de análise e reconhecimento de padrões nas camadas inferiores do modelo de para Internet das Coisas, que procura reduzir o processamento nas camadas superiores. Na pesquisa foram analisados os modelos de referência para Internet das Coisas e plataformas para desenvolvimento de aplicações nesse contexto. A nova arquitetura de implementada estende o LinkSmart Middeware pela introdução de um módulo para reconhecimento de padrões, implementa algoritmos para estimação de valores, detecção de outliers e descoberta de grupos nos dados brutos, oriundos de origens de dados. O novo módulo foi integrado à plataforma para Big Data Hadoop e usa as implementações algorítmicas do framework Mahout. Este trabalho destaca a importância da comunicação cross layer integrada à essa nova arquitetura. Nos experimentos desenvolvidos na pesquisa foram utilizadas bases de dados reais, provenientes do projeto Smart Santander, de modo a validar da nova arquitetura de IoT integrada aos serviços de análise e reconhecimento de padrões e a comunicação cross-layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans' desire for knowledge regarding animal species and their interactions with the natural world have spurred centuries of studies. The relatively new development of remote sensing systems using satellite or aircraft-borne sensors has opened up a wide field of research, which unfortunately largely remains dependent on coarse-scale image spatial resolution, particularly for habitat modeling. For habitat-specialized species, such data may not be sufficient to successfully capture the nuances of their preferred areas. Of particular concern are those species for which topographic feature attributes are a main limiting factor for habitat use. Coarse spatial resolution data can smooth over details that may be essential for habitat characterization. Three studies focusing on sea turtle nesting beaches were completed to serve as an example of how topography can be a main deciding factor for certain species. Light Detection and Ranging (LiDAR) data were used to illustrate that fine spatial scale data can provide information not readily captured by either field work or coarser spatial scale sources. The variables extracted from the LiDAR data could successfully model nesting density for loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) sea turtle species using morphological beach characteristics, highlight beach changes over time and their correlations with nesting success, and provide comparisons for nesting density models across large geographic areas. Comparisons between the LiDAR dataset and other digital elevation models (DEMs) confirmed that fine spatial scale data sources provide more similar habitat information than those with coarser spatial scales. Although these studies focused solely on sea turtles, the underlying principles are applicable for many other wildlife species whose range and behavior may be influenced by topographic features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decision support systems (DSS) support business or organizational decision-making activities, which require the access to information that is internally stored in databases or data warehouses, and externally in the Web accessed by Information Retrieval (IR) or Question Answering (QA) systems. Graphical interfaces to query these sources of information ease to constrain dynamically query formulation based on user selections, but they present a lack of flexibility in query formulation, since the expressivity power is reduced to the user interface design. Natural language interfaces (NLI) are expected as the optimal solution. However, especially for non-expert users, a real natural communication is the most difficult to realize effectively. In this paper, we propose an NLI that improves the interaction between the user and the DSS by means of referencing previous questions or their answers (i.e. anaphora such as the pronoun reference in “What traits are affected by them?”), or by eliding parts of the question (i.e. ellipsis such as “And to glume colour?” after the question “Tell me the QTLs related to awn colour in wheat”). Moreover, in order to overcome one of the main problems of NLIs about the difficulty to adapt an NLI to a new domain, our proposal is based on ontologies that are obtained semi-automatically from a framework that allows the integration of internal and external, structured and unstructured information. Therefore, our proposal can interface with databases, data warehouses, QA and IR systems. Because of the high NL ambiguity of the resolution process, our proposal is presented as an authoring tool that helps the user to query efficiently in natural language. Finally, our proposal is tested on a DSS case scenario about Biotechnology and Agriculture, whose knowledge base is the CEREALAB database as internal structured data, and the Web (e.g. PubMed) as external unstructured information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report sheds light on the fundamental questions and underlying tensions between current policy objectives, compliance strategies and global trends in online personal data processing, assessing the existing and future framework in terms of effective regulation and public policy. Based on the discussions among the members of the CEPS Digital Forum and independent research carried out by the rapporteurs, policy conclusions are derived with the aim of making EU data protection policy more fit for purpose in today’s online technological context. This report constructively engages with the EU data protection framework, but does not provide a textual analysis of the EU data protection reform proposal as such.