853 resultados para Concentrate intake
Resumo:
Angiogenesis, under normal conditions, is a tightly regulated balance between pro- and antiangiogenic factors. The goal of this study was to investigate the mechanisms involved in the control of the skeletal muscle angiogenic response induced by electrical stimulation during the suppression of plasma renin activity (PRA) with a high-salt diet. Rats fed 0.4% or 4% salt diets were exposed to electrical stimulation for 7 days. The tibialis anterior ( TA) muscles from stimulated and unstimulated hindlimbs were removed and prepared for gene expression analysis, CD31-terminal deoxynucleotide transferase-mediated dUTP nick-end labeling ( TUNEL) double-staining assay, and Bcl-2 and Bax protein expression by Western blot. Rats fed a low-salt diet showed a dramatic angiogenesis response in the stimulated limb compared with the unstimulated limb. This angiogenesis response was significantly attenuated when rats were placed on a high-salt diet. Microarray analysis showed that in the stimulated limb of rats fed a low-salt diet many genes related to angiogenesis were upregulated. In contrast, in rats fed a high-salt diet most of the genes upregulated in the stimulated limb function in apoptosis and cell cycle arrest. Endothelial cell apoptosis, as analyzed by CD31-TUNEL staining, increased by fourfold in the stimulated limb compared with the unstimulated limb. There was also a 48% decrease in the Bcl-2-to-Bax ratio in stimulated compared with unstimulated limbs of rats fed a high-salt diet, confirming severe apoptosis. This study suggests that the increase in endothelial cell apoptosis in TA muscle might contribute to the attenuation of angiogenesis response observed in rats fed a high-salt diet.
Resumo:
In this study we investigated: (a) the effects of intracerebroventricular (i.c.v.) injections of moxonidine (an alpha(2)-adrenergic and imidazoline receptor agonist) on the ingestion of water and NaCl induced by 24 h of water deprivation; (b) the effects of i.c.v. injection of moxonidine on central angiotensin II (ANG II)- and carbachol-induced water intake; (c) the effects of the pre-treatment with i.c.v, idazoxan (an alpha(2)-adrenergic and imidazoline receptor antagonist) and RX 821002 (a selective alpha(2)-adrenergic antagonist) on the antidipsogenic action of central moxonidine. Male Holtzman rats had stainless steel cannulas implanted in the lateral cerebral ventricle. Intracerebroventricular injection of moxonidine (5 and 20 nmol/1 mu l) reduced the ingestion of 1.5% NaCl solution (4.1 +/- 1.1 and 2.9 +/- 2.5 ml/2 h, respectively vs. control = 7.4 +/- 2.1 ml/2 h) and water intake (2.0 +/- 0.6 and 0.3 +/- 0.2 ml/h, respectively vs. control = 13.0 +/- 1.4 ml/h) induced by water deprivation, Intracerebroventricular moxonidine (5 nmol/1 mu l) also reduced i.c.v. ANG Ii-induced water intake (2.8 +/- 0.9 vs. control = 7.9 +/- 1.7 ml/1 h) and i.c.v. moxonidine (10 and 20 nmol/1 mu l) reduced i.c.v. carbachol-induced water intake (4.3 +/- 1.7 and 2.1 +/- 0.9, respectively vs. control = 9.2 +/- 1.0 ml/1 h). The pre-treatment with i.c.v. idazoxan (40 to 320 nmol/1 mu l) abolished the inhibitory effect of i.c.v, moxonidine on carbachol-induced water intake. Intracerebroventricular idazoxan (320 nmol/1 mu l) partially reduced the inhibitory effect of moxonidine on water deprivation-induced water intake and produced only a tendency to reduce the antidipsogenic effect of moxonidine on ANG Ii-induced water intake. RX 821002 (80 and 160 nmol/1 mu l) completely abolished the antidipsogenic action of moxonidine on ANG Ii-induced water intake. The results show that central injections c: moxonidine strongly inhibit water and NaCl ingestion. They also suggest the involvement of central alpha(2)-adrenergic receptors in the antidipsogenic action of moxonidine. (C) 1999 Elsevier B.V.
Resumo:
The effect of carbachol (80 nmol/mul) injection into the amygdaloid nuclear complex (AMG) on sodium appetite and water intake was studied in male Holtzman rats weighing 240-270 g. Twenty-five satiated rats and 38 water-deprived rats were used in the experiment on water intake. In the experiment on sodium intake, 19 rats were injected with atropine + carbachol and 9 rats with hexamethonium + carbachol. After carbachol injection into the AMG, water intake decreased in rats submitted to 30 h of water deprivation (10.28 +/- 1.04 ml/120 min vs 0.69 +/- 0.22 ml/120 min). The decrease in water intake was blocked by prior local injection of a tropine (20 nmol/1 mul)(11.66 +/- 1.46 ml/120 min vs 0.69 +/- 0.22 ml/120 min), but not of hexamethonium (30 nmol/1 mul), into the AMG. In water-deprived animals, carbachol injection into the AMG caused a decrease in sodium chloride intake (6.16 +/- 1.82 ml/h vs 0.88 +/- 0.54 ml/h) which was blocked by previous injection of hexamethonium but not of a tropine. These results suggest that the cholinergic system of the AMG plays a role in the control of water and salt intake.
Resumo:
Using simulated ceramic refuse chambers, field decomposition studies were performed on the spent fungal refuse of the lead-cutting ant Atta sexdens rubropilosa. Refuse half life was estimated at 40 days, with complete decomposition at 100 days. These results suggest that the conversion-factor method used to estimate forage input into leaf-cutting ant colonies must be corrected for decomposition, or serious estimation errors will occur.
Resumo:
This study investigated the roles of serotonin (5-HT) receptors in the lateral parabrachial nucleus (LPBN), and brain angiotensin type 1 (AT(1)) receptors in the intake of 0.3 M NaCl and water induced by angiotensin II (ANG II). Rats were implanted with stainless steel cannulas for injections into tho subfornical organ (SFO) and into the LPBN. Bilateral LPBN pretreatment with the nonselective serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl) markedly enhanced 0.3 M NaCl intake induced by injections of ANG II (20 ng/200 nl) into the SFO. Pretreatment of the SFO with the AT(1) receptor antagonist losartan (1 mu g/200 nl) blocked the intake of 0.3 M NaCl induced by ANG II in combination with LPBN methysergide injections. These results suggest that serotonergic mechanisms associated with the LPBN inhibit the expression of salt appetite induced by ANG II injections into Ihs SFO. In addition, the results indicate that the enhanced NaCl intake generated by central administration of ANG II in the presence of LPBN 5-HT blockade is mediated bg brain ATI receptors.
Resumo:
We studied the ingestion of 54 children with functional constipation (CC) and 41 without (Control), according to the Food Pyramid. A food frequency questionnaire was used, analyzing fruits with or without peel/bagasse, grains whole or refined, and beans separately. Total subjects and 2-6y CC ingested less DF (g/day) than Control (p < 0.05). The majority had high n degrees of dairy and of the meat group servings, but most groups/subgroups did not meet recommendation for fruit and vegetable. A greater proportion of fruit with peel/bagasse in Control than in CC was almost the only difference for 6-12y. There was a discrepancy between the high percentage of children with DF above AHF recommendation and the high percentage of children who did not meet Pyramid recommendations.
Resumo:
The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7 degrees C to 40.0 degrees C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.