972 resultados para Computer algorithms.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-throughput technologies are now used to generate more than one type of data from the same biological samples. To properly integrate such data, we propose using co-modules, which describe coherent patterns across paired data sets, and conceive several modular methods for their identification. We first test these methods using in silico data, demonstrating that the integrative scheme of our Ping-Pong Algorithm uncovers drug-gene associations more accurately when considering noisy or complex data. Second, we provide an extensive comparative study using the gene-expression and drug-response data from the NCI-60 cell lines. Using information from the DrugBank and the Connectivity Map databases we show that the Ping-Pong Algorithm predicts drug-gene associations significantly better than other methods. Co-modules provide insights into possible mechanisms of action for a wide range of drugs and suggest new targets for therapy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hidden Markov models (HMMs) are probabilistic models that are well adapted to many tasks in bioinformatics, for example, for predicting the occurrence of specific motifs in biological sequences. MAMOT is a command-line program for Unix-like operating systems, including MacOS X, that we developed to allow scientists to apply HMMs more easily in their research. One can define the architecture and initial parameters of the model in a text file and then use MAMOT for parameter optimization on example data, decoding (like predicting motif occurrence in sequences) and the production of stochastic sequences generated according to the probabilistic model. Two examples for which models are provided are coiled-coil domains in protein sequences and protein binding sites in DNA. A wealth of useful features include the use of pseudocounts, state tying and fixing of selected parameters in learning, and the inclusion of prior probabilities in decoding. AVAILABILITY: MAMOT is implemented in C++, and is distributed under the GNU General Public Licence (GPL). The software, documentation, and example model files can be found at http://bcf.isb-sib.ch/mamot

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actualment seria impensable la existència d'una xarxa d'informació com Internet sense la existència dels motors de cerca. Gràcies a ells, qualsevol usuari tenim al nostre abast la possibilitat d'obtenir informació sobre qualsevol tema només enviant una consulta des dels nostres ordinadors i rebent una resposta en qüestió de segons. Entre els usuaris dels cercadors d'Internet és molt habitual que les consultes facin referència a la empresa on treballem, la ciutat on vivim, els llocs que visitem, o inclús sobre problemes que tenim o malalties que patim amb l'objectiu de trobar opinions, consells o solucions. En resum, els usuaris, a través de les nostres consultes, proporcionem a diari als motors de cerca informació sobre nosaltres mateixos i sobre la nostra identitat que, juntament amb la adreça IP de la màquina des d'on fem les nostres consultes, ens fa perdre l'anonimat dins dels seus sistemes. Sobre aquesta problemàtica és del que tracta el present Projecte de Final de Carrera. En ell s'ha implementat una solució de la proposta especificada per Alexandre Viejo i Jordi Castellà-Roca en la seva publicació "Using social networks to disort users' profiles generated by web search engines", en la qual es documenten una sèrie de protocols de seguretat i d'algorismes de protecció i distribució que garanteixen la privacitat de la identitat dels usuaris dins dels motors de cerca aprofitant per aquest fi la relació existent entre aquests usuaris a través de les xarxes socials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aplicació per a iPad a mode de repositori de continguts relacionats amb l'ensenyament d'assignatures d'informàtica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'aportació d'aquest PFC consistirà en el desenvolupament d'un programa informàtic que verifiqui els fonaments teòrics i els algorismes proposats pels seus autors i proporcionar una eina per a l'experimentació.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoetin-delta (Dynepo Shire Pharmaceuticals, Basing stoke, UK) is a synthetic form of erythropoietin (EPO) whose resemblance with endogenous EPO makes it hard to identify using the classical identification criteria. Urine samples collected from six healthy volunteers treated with epoetin-delta injections and from a control population were immuno-purified and analyzed with the usual IEF method. On the basis of the EPO profiles integration, a linear multivariate model was computed for discriminant analysis. For each sample, a pattern classification algorithm returned a bands distribution and intensity score (bands intensity score) saying how representative this sample is of one of the two classes, positive or negative. Effort profiles were also integrated in the model. The method yielded a good sensitivity versus specificity relation and was used to determine the detection window of the molecule following multiple injections. The bands intensity score, which can be generalized to epoetin-alpha and epoetin-beta, is proposed as an alternative criterion and a supplementary evidence for the identification of EPO abuse.