951 resultados para Complex networks. Magnetic system. Metropolis
Resumo:
This thesis presents the results from an investigation into the merits of analysing Magnetoencephalographic (MEG) data in the context of dynamical systems theory. MEG is the study of both the methods for the measurement of minute magnetic flux variations at the scalp, resulting from neuro-electric activity in the neocortex, as well as the techniques required to process and extract useful information from these measurements. As a result of its unique mode of action - by directly measuring neuronal activity via the resulting magnetic field fluctuations - MEG possesses a number of useful qualities which could potentially make it a powerful addition to any brain researcher's arsenal. Unfortunately, MEG research has so far failed to fulfil its early promise, being hindered in its progress by a variety of factors. Conventionally, the analysis of MEG has been dominated by the search for activity in certain spectral bands - the so-called alpha, delta, beta, etc that are commonly referred to in both academic and lay publications. Other efforts have centred upon generating optimal fits of "equivalent current dipoles" that best explain the observed field distribution. Many of these approaches carry the implicit assumption that the dynamics which result in the observed time series are linear. This is despite a variety of reasons which suggest that nonlinearity might be present in MEG recordings. By using methods that allow for nonlinear dynamics, the research described in this thesis avoids these restrictive linearity assumptions. A crucial concept underpinning this project is the belief that MEG recordings are mere observations of the evolution of the true underlying state, which is unobservable and is assumed to reflect some abstract brain cognitive state. Further, we maintain that it is unreasonable to expect these processes to be adequately described in the traditional way: as a linear sum of a large number of frequency generators. One of the main objectives of this thesis will be to prove that much more effective and powerful analysis of MEG can be achieved if one were to assume the presence of both linear and nonlinear characteristics from the outset. Our position is that the combined action of a relatively small number of these generators, coupled with external and dynamic noise sources, is more than sufficient to account for the complexity observed in the MEG recordings. Another problem that has plagued MEG researchers is the extremely low signal to noise ratios that are obtained. As the magnetic flux variations resulting from actual cortical processes can be extremely minute, the measuring devices used in MEG are, necessarily, extremely sensitive. The unfortunate side-effect of this is that even commonplace phenomena such as the earth's geomagnetic field can easily swamp signals of interest. This problem is commonly addressed by averaging over a large number of recordings. However, this has a number of notable drawbacks. In particular, it is difficult to synchronise high frequency activity which might be of interest, and often these signals will be cancelled out by the averaging process. Other problems that have been encountered are high costs and low portability of state-of-the- art multichannel machines. The result of this is that the use of MEG has, hitherto, been restricted to large institutions which are able to afford the high costs associated with the procurement and maintenance of these machines. In this project, we seek to address these issues by working almost exclusively with single channel, unaveraged MEG data. We demonstrate the applicability of a variety of methods originating from the fields of signal processing, dynamical systems, information theory and neural networks, to the analysis of MEG data. It is noteworthy that while modern signal processing tools such as independent component analysis, topographic maps and latent variable modelling have enjoyed extensive success in a variety of research areas from financial time series modelling to the analysis of sun spot activity, their use in MEG analysis has thus far been extremely limited. It is hoped that this work will help to remedy this oversight.
Resumo:
Diagnosing faults in wastewater treatment, like diagnosis of most problems, requires bi-directional plausible reasoning. This means that both predictive (from causes to symptoms) and diagnostic (from symptoms to causes) inferences have to be made, depending on the evidence available, in reasoning for the final diagnosis. The use of computer technology for the purpose of diagnosing faults in the wastewater process has been explored, and a rule-based expert system was initiated. It was found that such an approach has serious limitations in its ability to reason bi-directionally, which makes it unsuitable for diagnosing tasks under the conditions of uncertainty. The probabilistic approach known as Bayesian Belief Networks (BBNS) was then critically reviewed, and was found to be well-suited for diagnosis under uncertainty. The theory and application of BBNs are outlined. A full-scale BBN for the diagnosis of faults in a wastewater treatment plant based on the activated sludge system has been developed in this research. Results from the BBN show good agreement with the predictions of wastewater experts. It can be concluded that the BBNs are far superior to rule-based systems based on certainty factors in their ability to diagnose faults and predict systems in complex operating systems having inherently uncertain behaviour.
Resumo:
This thesis describes the geology of a Lower Palaeozoic terrain, situated west of the town of Fishguard, SW Dyfed, Wales. The area is dominated by the Fishguard Volcanic Complex (Upper Llanvirn), and sediments that range in age from the Middle Cambrian to the Lower Llandeilo. The successions represent an insight into sedimentation and volcanism for c. 100 Ma. along the south-western margin of the Lower Palaeozoic Welsh Basin. The stratigraphy of the sedimentary sequence has been completely revised and the existing volcanostratigraphy modified. The observed complexity of the stratigraphy is primarily the consequence of Caldedonide deformation which resulted in large scale repetition. Fold-thrust tectonics dominates the structural style of the area. Caledonide trending (NE-SW) cross-faults complicate preexisting structures. Middle Cambrian (?) sedimentation is documented by shallow marine clastics and red shales deposited within tidal - subtidal environments. Upper Cambrian sedimentation was dominated by shallow marine `storm' and `fair weather' sedimentation within a muddy shelf environment. Shallow marine conglomerates and heterolithic intertidal siliciclastics mark the onset of Ordovician sedimentation during the lower Arenig transgression. Mid-Arenig sediments reflect deposits influenced by storm, fair-weather and wave related processes in various shallow marine environments, including; shoreface, inner shelf, shoaling bar, and deltaic. Graptolitic marine shales were deposited from the upper mid-Arenig through to the lower Llandeilo; during which time sediments accumulated by pelagic processes and fine grained turbidites. The varied nature of sedimentation reflects both localised change within the depositional system and the influence of larger regional eustatic events. Ordovician subaqueous volcanic activity produced thick accumulations of lavas, pyroclastics, hydroclastics, and hyaloclastics. The majority of volcanism was effusive in nature, erupted below the Pressure Compensation Level. Basaltic volcanism was characterised by pillowed lavas and tube networks, whilst sheet-flow lavas, pillow breccias and minor hyaloclastites developed locally. Silicic volcanism was dominated by rhyolitic clastics of various affinities, although coherent silicic obsidian lavas, sheet-flow lavas and pyroclastics developed. Hypabyssal intrusives of variable composition and habit occur throughout the volcanic successions. Low-grade regional metamorphism has variably affected the area, conditions of the prehnite-pumpellyite and greenschist facies having been attained. Numerous secondary phases developed in response to the conditions imposed, which collectively indicate that P-T conditions were of low-pressure facies series in the range P= 1.2-2.0 kbars and T= 230-350oC, under an elevated geothermal gradient of 40-45oC km-1. Polymineralic cataclastites associated with Caledonide deformation indicate that tectonism and metamorphism were in part contemporaneous.
Resumo:
The process framework comprises three phases, as follows: scope the supply chain/network; identify the options for supply system architecture and select supply system architecture. It facilitates a structured approach that analyses the supply chain/network contextual characteristics, in order to ensure alignment with the appropriate supply system architecture. The process framework was derived from comprehensive literature review and archival case study analysis. The review led to the classification of supply system architectures according to their orientation, whether integrated; partially integrated; co-ordinated or independent. The classification was combined with the characteristics that influence the selection of supply system architecture to encapsulate the conceptual framework. It builds upon existing frameworks and methodologies by focusing on structured procedure; supporting project management; facilitating participation and clarifying point of entry. The process framework was initially tested in three case study applications from the food, automobile and hand tool industries. A variety of industrial settings was chosen to illustrate transferability. The case study applications indicate that the process framework is a valid approach to the problem; however, further testing is required. In particular, the use of group support system technologies to support the process and the steps involving the participation of software vendors need further testing. However, the process framework can be followed due to the clarity of its presentation. It considers the issue of timing by including alternative decision-making techniques, dependent on the constraints. It is useful for ensuring a sound business case is developed, with supporting documentation and analysis that identifies the strategic and functional requirements of supply system architecture.
Resumo:
This thesis presents an analysis of the stability of complex distribution networks. We present a stability analysis against cascading failures. We propose a spin [binary] model, based on concepts of statistical mechanics. We test macroscopic properties of distribution networks with respect to various topological structures and distributions of microparameters. The equilibrium properties of the systems are obtained in a statistical mechanics framework by application of the replica method. We demonstrate the validity of our approach by comparing it with Monte Carlo simulations. We analyse the network properties in terms of phase diagrams and found both qualitative and quantitative dependence of the network properties on the network structure and macroparameters. The structure of the phase diagrams points at the existence of phase transition and the presence of stable and metastable states in the system. We also present an analysis of robustness against overloading in the distribution networks. We propose a model that describes a distribution process in a network. The model incorporates the currents between any connected hubs in the network, local constraints in the form of Kirchoff's law and a global optimizational criterion. The flow of currents in the system is driven by the consumption. We study two principal types of model: infinite and finite link capacity. The key properties are the distributions of currents in the system. We again use a statistical mechanics framework to describe the currents in the system in terms of macroscopic parameters. In order to obtain observable properties we apply the replica method. We are able to assess the criticality of the level of demand with respect to the available resources and the architecture of the network. Furthermore, the parts of the system, where critical currents may emerge, can be identified. This, in turn, provides us with the characteristic description of the spread of the overloading in the systems.
Resumo:
Four novel mononuclear coordination compounds namely: [Fe(Hthpy)2](SO4)1/2·3.5H2O 1, [Fe(Hthpy)2]NO3·3H2O 2, [Fe(H2mthpy)2](CH3C6H4SO3)3·CH3CH2OH 3 and [Fe(Hethpy)(ethpy)]·8H2O 4, (H2thpy = pyridoxalthiosemicarbazone, H2mthpy = pyridoxal-4-methylthiosemicarbazone, H2ethpy = pyridoxal-4-ethylthiosemicarbazone), were synthesized in the absence or presence of organic base, Et3N and NH3. Compounds 1 and 2 are monocationic, and were prepared using the singly deprotonated form of pyridoxalthiosemicarbazone. Both compounds crystallise in the monoclinic system, C2/c and P21/c space group for 1 and 2, respectively. Complex 3 is tricationic, it is formed with neutral bis(ligand) complex and possesses an interesting 3D channel architecture, the unit cell is triclinic, P1 space group. For complex 4, the pH value plays an important role during its synthesis; 4 is neutral and crystallises with two inequivalent forms of the ligand: the singly and the doubly deprotonated chelate of H2ethpy, the unit cell is monoclinic, C2/c space group. Notably, in 1 and 4, there is an attractive infinite three dimensional hydrogen bonding network in the crystal lattice. Magnetic measurements of 1 and 4 revealed that a rather steep spin transition from the low spin to high spin Fe(III) states occurs above 300 K in the first heating step. This transition is accompanied by the elimination of solvate molecules and thus, stabilizes the high spin form due to the breaking of hydrogen bonding networks; compared to 2 and 3, which keep their low spin state up to 400 K.
Resumo:
A multinuclear Fe-Mn-Cr complex with 4-amino-1,2,4-triazole (NH2trz) and oxalate (ox) ligands has been synthesized successfully. The formula of the [Fe(NH2trz)3][ClO4][MnCr(ox)3].4H2O complex has been obtained based on the metal and C, H, N contents. The presence of water molecules, metal-ligand bonding and bridge ligand in the multinuclear complex has been confirmed by its infrared spectrum. The compound crystallizes in the hexagonal system with cell parameters of a = b = 18.695 Å and c = 57.351 Å. The compound shows a gradual spin crossover for iron(II) in the [Fe(NH2trz)3]2+ with transition temperature (T1/2) of 205 K. The antiferromagnetic interaction between Cr(III) and Mn(II) ions in the [MnCr(ox)3]n n- network is observed from the Weiss constant (θ) of –2.3 K.
Resumo:
The structures of linear chain Fe(II) spin-crossover compounds of α,β- and α,ω-bis (tetrazol-1-yl)alkane type ligands are described in relation to their magnetic properties. The first threefold interlocked 3-D catenane Fe(II) spin-transition system, [μ-tris(1,4-bis(tetrazol-1-yl)butane-N1,N1′) iron(II)] bis(perchlorate), will be discussed. An analysis is made among the structures and the cooperativity of the spin-crossover behaviour of polynuclear Fe(II) spin-transition materials.
Resumo:
The paper describes education complex "Multi-agent Technologies for Parallel and Distributed Information Processing in Telecommunication Networks".
Resumo:
A description of architecture and approaches to the implementation of a protection system of metadatabased adaptable information systems is suggested. Various protection means are examined. The system described is a multilevel complex based on a multiagent system combining IDS functional abilities with structure and logics protection means.
Resumo:
Methodology of computer-aided investigation and provision of safety for complex constructions and a prototype of the intelligent applied system, which implements it, are considered. The methodology is determined by the model of the object under scrutiny, by the structure and functions of investigation of safety as well as by a set of research methods. The methods are based on the technologies of object-oriented databases, expert systems and on the mathematical modeling. The intelligent system’s prototype represents component software, which provides for support of decision making in the process of safety investigations and investigation of the cause of failure. Support of decision making is executed by analogy, by determined search for the precedents (cases) with respect to predicted (on the stage of design) and observed (on the stage of exploitation) parameters of the damage, destruction and malfunction of a complex hazardous construction.
Resumo:
The controlled from distance teaching (DT) in the system of technical education has a row of features: complication of informative content, necessity of development of simulation models and trainers for conducting of practical and laboratory employments, conducting of knowledge diagnostics on the basis of mathematical-based algorithms, organization of execution collective projects of the applied setting. For development of the process of teaching bases of fundamental discipline control system Theory of automatic control (TAC) the combined approach of optimum combination of existent programmatic instruments of support was chosen DT and own developments. The system DT TAC included: controlled from distance course (DC) of TAC, site of virtual laboratory practical works in LAB.TAC and students knowledge remote diagnostic system d-tester.
Resumo:
We suppose the neural networks for solution the problem of the diagnostic in Homeopath System and consider the algorithms of the training.