894 resultados para Combustion, Theory of.
Resumo:
In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.
Resumo:
This work deals with the theory of Relativity and its diffusion in Italy in the first decades of the XX century. Not many scientists belonging to Italian universities were active in understanding Relativity, but two of them, Max Abraham and Tullio Levi-Civita left a deep mark. Max Abraham engaged a substantial debate against Einstein between 1912 and 1914 about electromagnetic and gravitation aspects of the theories. Levi-Civita played a fundamental role in giving Einstein the correct mathematical instruments for the General Relativity formulation since 1915. This work, which doesn't have the aim of a mere historical chronicle of the events, wants to highlight two particular perspectives: on one hand, the importance of Abraham-Einstein debate in order to clarify the basis of Special Relativity, to observe the rigorous logical structure resulting from a fragmentary reasoning sequence and to understand Einstein's thinking; on the other hand, the originality of Levi-Civita's approach, quite different from the Einstein's one, characterized by the introduction of a method typical of General Relativity even to Special Relativity and the attempt to hide the two Einstein Special Relativity postulates.
Resumo:
This dissertation mimics the Turkish college admission procedure. It started with the purpose to reduce the inefficiencies in Turkish market. For this purpose, we propose a mechanism under a new market structure; as we prefer to call, semi-centralization. In chapter 1, we give a brief summary of Matching Theory. We present the first examples in Matching history with the most general papers and mechanisms. In chapter 2, we propose our mechanism. In real life application, that is in Turkish university placements, the mechanism reduces the inefficiencies of the current system. The success of the mechanism depends on the preference profile. It is easy to show that under complete information the mechanism implements the full set of stable matchings for a given profile. In chapter 3, we refine our basic mechanism. The modification on the mechanism has a crucial effect on the results. The new mechanism is, as we call, a middle mechanism. In one of the subdomain, this mechanism coincides with the original basic mechanism. But, in the other partition, it gives the same results with Gale and Shapley's algorithm. In chapter 4, we apply our basic mechanism to well known Roommate Problem. Since the roommate problem is in one-sided game patern, firstly we propose an auxiliary function to convert the game semi centralized two-sided game, because our basic mechanism is designed for this framework. We show that this process is succesful in finding a stable matching in the existence of stability. We also show that our mechanism easily and simply tells us if a profile lacks of stability by using purified orderings. Finally, we show a method to find all the stable matching in the existence of multi stability. The method is simply to run the mechanism for all of the top agents in the social preference.
Resumo:
We introduce labelled sequent calculi for indexed modal logics. We prove that the structural rules of weakening and contraction are height-preserving admissible, that all rules are invertible, and that cut is admissible. Then we prove that each calculus introduced is sound and complete with respect to the appropriate class of transition frames.
Resumo:
Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.
Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics
Resumo:
This thesis investigates the boundaries between body and object in J.K. Rowling’s Harry Potter series, seven children’s literature novels published between 1997 and 2007. Lord Voldemort, Rowling’s villain, creates Horcruxes—objects that contain fragments of his soul—in order to ensure his immortality. As vessels for human soul, these objects rupture the boundaries between body and object and become “things.” Using contemporary thing theorists including John Plotz and materialists Jean Baudrillard and Walter Benjamin, I look at Voldemort’s Horcruxes as transgressive, liminal, unclassifiable entities in the first chapter. If objects can occupy the juncture between body and object, then bodies can as well. Dementors and Inferi, dark creatures that Rowling introduces throughout the series, live devoid of soul. Voldemort, too, becomes a thing as he splits his soul and creates Horcruxes. These soulless bodies are uncanny entities, provoking fear, revulsion, nausea, and the loss of language. In the second chapter, I use Sigmund Freud’s theorization of the uncanny as well as literary critic Kelly Hurley to investigate how Dementors, Inferi, and Voldemort exist as body-turned-object things at the juncture between life and death. As Voldemort increasingly invests his immaterial soul into material objects, he physically and spiritually degenerates, transforming from the young, handsome Tom Marvolo Riddle into the snake-like villain that murdered Harry’s parents and countless others. During his quest to find and destroy Voldemort’s Horcruxes, Harry encounters a different type of object, the Deathly Hallows. Although similarly accessing boundaries between body/object, life/death, and materiality/immateriality, the three Deathly Hallows do not transgress these boundaries. Through the Deathly Hallows, Rowling provides an alternative to thingification: objects that enable boundaries to fluctuate, but not breakdown. In the third chapter, I return to thing theorists, Baudrillard, and Benjamin to study how the Deathly Hallows resist thingification by not transgressing the boundaries between body and object.