918 resultados para Collision attack


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to detect and analyse regular patterns of play in fast attack of football teams, through the combination of the sequential analysis technique and semi-structured interviews to experienced first League Portuguese coaches. The sample included 36 games (12 games of the respective national leagues per team) of the F.C. Barcelona, Inter Milan, and Manchester United teams that were coded with the observational instrument tool developed by Sarmento et al. (2010) and the data analysed through sequential analysis with the software SDIS-GSEQ 5.0. Based on the detected patterns, semi-structured interviews were carried out to 8 expert high-performance football coaches and data were analysed through the content analysis technique using the software NVivo 10. The detected patterns of play revealed specific characteristics of the teams under study. The combination of the results of sequential analysis with the qualitative interviews to the professional coaches proved to be very fruitful in this game the analysis of scope, allowing reconcile scientific knowledge with practical interpretation of coaches who develop their tasks in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents security issues and vulnerabilities in home and small office local area networks that can be used in cyber-attacks. There is previous research done on single vulnerabilities and attack vectors, but not many papers present full scale attack examples towards LAN. First this thesis categorizes different security threads and later in the paper methods to launch the attacks are shown by example. Offensive security and penetration testing is used as research methods in this thesis. As a result of this thesis an attack is conducted using vulnerabilities in WLAN, ARP protocol, browser as well as methods of social engineering. In the end reverse shell access is gained to the target machine. Ready-made tools are used in the attack and their inner workings are described. Prevention methods are presented towards the attacks in the end of the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg–Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter–Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a high-accuracy fully analytical formulation to compute the miss distance and collision probability of two approaching objects following an impulsive collision avoidance maneuver. The formulation hinges on a linear relation between the applied impulse and the objects? relative motion in the b-plane, which allows one to formulate the maneuver optimization problem as an eigenvalue problem coupled to a simple nonlinear algebraic equation. The optimization criterion consists of minimizing the maneuver cost in terms of delta-V magnitude to either maximize collision miss distance or to minimize Gaussian collision probability. The algorithm, whose accuracy is verified in representative mission scenarios, can be employed for collision avoidance maneuver planning with reduced computational cost when compared with fully numerical algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As unmanned autonomous vehicles (UAVs) are being widely utilized in military and civil applications, concerns are growing about mission safety and how to integrate dierent phases of mission design. One important barrier to a coste ective and timely safety certication process for UAVs is the lack of a systematic approach for bridging the gap between understanding high-level commander/pilot intent and implementation of intent through low-level UAV behaviors. In this thesis we demonstrate an entire systems design process for a representative UAV mission, beginning from an operational concept and requirements and ending with a simulation framework for segments of the mission design, such as path planning and decision making in collision avoidance. In this thesis, we divided this complex system into sub-systems; path planning, collision detection and collision avoidance. We then developed software modules for each sub-system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional direct numerical simulations (DNS) have been performed on a finite-size hemispherecylinder model at angle of attack AoA = 20◦ and Reynolds numbers Re = 350 and 1000. Under these conditions, massive separation exists on the nose and lee-side of the cylinder, and at both Reynolds numbers the flow is found to be unsteady. Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are employed in order to study the primary instability that triggers unsteadiness at Re = 350. The dominant coherent flow structures identified at the lower Reynolds number are also found to exist at Re = 1000; the question is then posed whether the flow oscillations and structures found at the two Reynolds numbers are related. POD and DMD computations are performed using different subdomains of the DNS computational domain. Besides reducing the computational cost of the analyses, this also permits to isolate spatially localized oscillatory structures from other, more energetic structures present in the flow. It is found that POD and DMD are in general sensitive to domain truncation and noneducated choices of the subdomain may lead to inconsistent results. Analyses at Re = 350 show that the primary instability is related to the counter rotating vortex pair conforming the three-dimensional afterbody wake, and characterized by the frequency St ≈ 0.11, in line with results in the literature. At Re = 1000, vortex-shedding is present in the wake with an associated broadband spectrum centered around the same frequency. The horn/leeward vortices at the cylinder lee-side, upstream of the cylinder base, also present finite amplitude oscillations at the higher Reynolds number. The spatial structure of these oscillations, described by the POD modes, is easily differentiated from that of the wake oscillations. Additionally, the frequency spectra associated with the lee-side vortices presents well defined peaks, corresponding to St ≈ 0.11 and its few harmonics, as opposed to the broadband spectrum found at the wake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional Direct Numerical Simulations combined with Particle Image Velocimetry experiments have been performed on a hemisphere-cylinder at Reynolds number 1000 and angle of attack 20◦. At these flow conditions, a pair of vortices, so-called “horn” vortices, are found to be associated with flow separation. In order to understand the highly complex phenomena associated with this fully threedimensional massively separated flow, different structural analysis techniques have been employed: Proper Orthogonal and Dynamic Mode Decompositions, POD and DMD, respectively, as well as criticalpoint theory. A single dominant frequency associated with the von Karman vortex shedding has been identified in both the experimental and the numerical results. POD and DMD modes associated with this frequency were recovered in the analysis. Flow separation was also found to be intrinsically linked to the observed modes. On the other hand, critical-point theory has been applied in order to highlight possible links of the topology patterns over the surface of the body with the computed modes. Critical points and separation lines on the body surface show in detail the presence of different flow patterns in the base flow: a three-dimensional separation bubble and two pairs of unsteady vortices systems, the horn vortices, mentioned before, and the so-called “leeward” vortices. The horn vortices emerge perpendicularly from the body surface at the separation region. On the other hand, the leeward vortices are originated downstream of the separation bubble, as a result of the boundary layer separation. The frequencies associated with these vortical structures have been quantified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. It is a well-known fact that DVMs can also have extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and so without spurious ones, is called normal. For binary mixtures also the concept of supernormal DVMs was introduced, meaning that in addition to the DVM being normal, the restriction of the DVM to any single species also is normal. Here we introduce generalizations of this concept to DVMs for multicomponent mixtures. We also present some general algorithms for constructing such models and give some concrete examples of such constructions. One of our main results is that for any given number of species, and any given rational mass ratios we can construct a supernormal DVM. The DVMs are constructed in such a way that for half-space problems, as the Milne and Kramers problems, but also nonlinear ones, we obtain similar structures as for the classical discrete Boltzmann equation for one species, and therefore we can apply obtained results for the classical Boltzmann equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carcass removal by scavengers has been identified as one of the largest biases in estimating bird mortality from anthropogenic sources. Only two studies have examined carcass removal by scavengers in an urban environment, and previous estimates of bird-window collision mortality at houses have relied on carcass removal rates from wind turbine studies. We placed a bird carcass and time-lapse camera at 44 houses in Edmonton, Alberta. In total, 166 7-day trials were conducted throughout 2015. Time-to-event (survival) analysis was used to identify covariates that affected removal. The carcass removal rate was determined for use in estimating the number of birds killed from bird-window collisions at houses in Alberta. In total, 67.5% of carcasses were removed. The date the carcass was placed, the year the house was built, and the level of development within 50 m of the house were the covariates that had the largest effect on carcass removal. In calculating our removal rate, the number of detected carcasses in the first 24 hours was adjusted by 1.47 to account for removal by scavengers. Previously collected citizen science data were used to create an estimate of 957,440 bird deaths each year in Alberta as a result of bird-window collisions with houses. This number is based on the most detailed bird-window collision study at houses to date and a carcass removal study conducted in the same area. Similar localized studies across Canada will need to be completed to reduce the biases that exist with the previous bird-window collision mortality estimate for houses in Canada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The instructions in this manual have been prepared to provide guidance for completing the South Carolina Traffic Collision Report Form TR-310 and the Supplemental Bus and Truck Collision Report Form. It lists traffic laws and definitions and gives examples of traffic collision report forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.