983 resultados para Collision


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the calculated results about the propagation properties of electromagnetic wave in a plasma slab are described. The relationship of the propagation properties with frequencies of electromagnetic wave, and parameters of plasma (electron temperature, electron density, dimensionless collision frequency and the size of the plasma slab) is analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The experimental and theoretical studies are reported in this paper for the head-on collisions of a liquid droplet with another of the same fluid resting on a solid substrate. The droplet on the hydrophobic polydimethylsiloxane (PDMS) substrate remains in a shape of an approximately spherical segment and is isometric to an incoming droplet. The colliding process of the binary droplets was recorded with high-speed photography. Head-on collisions saw four different types of response in our experiments: complete rebound, coalescence, partial rebound With conglutination, and coalescence accompanied by conglutination. For a complete rebound, both droplets exhibited remarkable elasticity and the contact time of the two colliding droplets was found to be in the range of 10-20 ms. With both droplets approximately considered as elastic bodies, Hertz contact theory was introduced to estimate the contact time for the complete rebound case. The estimated result Was found to be on the same order of magnitude as the experimental data, which indicates that the present model is reasonable. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computer simulation was performed to explore the features and effects of sedimentation on rapid coagulation. To estimate the accumulated influence of gravity on coagulation for dispersions, a sedimentation influence ratio is defined. Some factors possibly related to the influence of sedimentation were considered in the simulation and analysed by comparing the size distribution of aggregates, the change in collision number, and coagulation rates at different gravity levels (0 g, 1 g and more with g being the gravitational constant).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters n(e), v, w, L, w(b). The phi800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 similar to 35) GHz (w = 2pif, wave length lambda = 15 cm similar to 8 mm). The electron density in the plasma is n(e) = (3 x 10(10) similar to 1 x 10(14)) cm(-3). The collision frequency v = (1 x 10(8) similar to 6 x 10(10)) Hz. The thickness of the plasma layer L = (2 similar to 80) cm. The electron circular frequency w(b) = eB(0)/m(e), magnetic flux density B-0 = (0 similar to 0.84) T. The experimental results show that when the plasma layer is thick (such as L/lambda greater than or equal to 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters n(e), v, w, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and lambda are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range, but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters n(e), v, w, L. In fact, if w < w(p), v(2) much less than w(2), the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if w > w(p), v(2) much less than w(2) (just v approximate to f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power attenuation value under the magnetic field and without a magnetic field. The result indicates that the value measured under the magnetic field shows a distinct improvement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The snap-through and pull-in instabilities of the micromachined arch-shaped beams under an electrostatic loading are studied both theoretically and experimentally. The pull-in instability that results in a system collision with an electrode substrate may lead to a system failure and, thus, limits the system maximum displacement. The beam/plate structure with a flat initial configuration under an electrostatic loading can only experience the pull-in instability. With the different arch configurations, the structure may experience either only the pull-in instability or the snap-through and pull-in instabilities together. As shown in our computation and experiment, those arch-shaped beams with the snap-through instability have the larger maximum displacement compared with the arch-shaped beams with only the pull-in stability and those with the flat initial configuration. The snap-through occurs by exerting a fixed load, and the structure experiences a discontinuous displacement jump without consuming power. Furthermore, after the snap-through jump, the structures are demonstrated to have the capacity to withstand further electrostatic loading without pull-in. Those properties of consuming no power and increasing the structure deflection range without pull-in is very useful in microelectromechanical systems design, which can offer better sensitivity and tuning range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El autor nos presenta como desafíos para los tiempos del bicentenario emprender un difícil camino de reconciliación cultural que exige experiencias de historias compartidas y solidaridades vividas. Analiza, en este texto, los fenómenos de colisión y encuentro de la cultura popular y la cultura urbana en el escenario de nuestras ciudades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model for gain saturation in gas flow and chemical lasers is presented. The theory is applicable to all possible numerical values of τ/τc, where τ is the characteristie flow time for the flowing gas to move across the laser action region and τc is the characteristic collision relaxation time. The saturation effects of the convection and the "source flow" of the inverted population are revealed. A general relation of gain coefficient and some new gain saturation laws are obtained. For the special case of τ/τc1, the present theoretical results agree with the experimental results on the "anomalous" saturation phenomena in the supersonic diffusion HF chemical laser determined recently by Gross and Coffer[8]. The theory also agrees with the measured results of saturation intensity varying with τ/τc in gas flow CO2 lasers[7]. For the special case of τ/τc1, the present theory is consistent with both the standard theory[1] for gas lasers where the gas has no macroscopic motion and the known gain saturation theory[2-5] for gas flow and chemical lasers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the interaction of solitary waves in a two-fluid system which consistsof two superimposed incompressible inviscid fluids with a free surface and a horizontal rigidbottom. Under the assumption of shallow water wave, we first derive the basic equationssuitable for the model considered, a generalized form of the Boussinesq equations, then usingthe PLK method and the reductive perturbation method, obtain the second-order approximatesolution for the head-on collision between two pairs of interface and surface solitary waves,and give their maximum amplitudes during the collision and the nonuniform phase shiftsafter the collision which lead to the distortion of the wave profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A critical review on the mechanism and models on the bubble-to-slug transition of two-phase gas-liquid flows are presented in the present paper. It is shown that the most possible mechanism controlled the bubble-to-slug transition is the bubble coalescence. Focusing on the bubble-to-slug transition for the low-Re two-phase flow, a simple Monte Carlo method is used to simulate the influence of the initial bubble size on the bubble-to-slug transition. Some secondary factors, such as the liquid viscosity, the surface tension, and the relative slip between the two phases, are ignored in the present study. It is found that the locus of the dimensionless rate of collision is a universal curve. Based on this curve, it is determined that the bubble initial size can affect the phase distribution and flow pattern when its dimensionless value is in the range from 0.03 to 0.4. A simple relationship between the critical void fraction and the initial bubble size is proposed, which agrees very well with the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional direct simulation Monte Carlo (DSMC) method has a strong restriction on the cell size because simulated particles are selected randomly within the cell for collisions. Cells with size larger than the molecular mean free path are generally not allowed in correct DSMC simulations. However, the cell-size induced numerical error can be controlled if the gradients of flow properties are properly involved during collisions. In this study, a large cell DSMC scheme is proposed to relax the cell size restriction. The scheme is applied to simulate several test problems and promising results are obtained even when the cell size is greater than 10 mean free paths of gas molecules. However, it is still necessary, of course, that the cell size be small with respect to the flow field structures that must be resolved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The experimental and theoretical investigations into the head-on collision between a landing droplet with another one resting on the PDMS substrate were addressed in this talk. The colliding process of the two droplets was recorded with highspeed camera. Four different responses after collision were observed in our experiments: complete rebound, coalescence, partial rebound with conglutination, and coalescence accompanied by conglutination. The contact time between the two colliding droplets was found to be in the range of 10-20 milliseconds. For the complete bouncing case, Hertz contact model was applied to estimate the contact time of the binary head-on colliding droplets with both the droplets considered as elastic bodies. The estimated contact time was in good agreement with the experimental result.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Part I the kinetic theory of excitations in flowing liquid He II is developed to a higher order than that carried out previously, by Landau and Khalatnikov, in order to demonstrate the existence of non-equilibrium terms of a new nature in the hydrodynamic equations. It is then shown that these terms can lead to spontaneous destabilization in counter currents when the relative velocity of the normal and super fluids exceeds a critical value that depends on the temperature, but not on geometry. There are no adjustable parameters in the theory. The critical velocities are estimated to be in the 14-20 m/sec range for T ≤ 2.0° K, but tend to zero as T → T_λ. The possibility that these critical velocities may be related to the experimentally observed "intrinsic" critical velocities is discussed.

Part II consists of a semi-classical investigation of rotonquantized vortex line interactions. An essentially classical model is used for the collision and the behavior of the roton in the vortex field is investigated in detail. From this model it is possible to derive the HVBK mutual friction terms that appear in the phenomenalogical equations of motion for rotating liquid He II. Estimates of the Hall and Vinen B and B' coefficients are in good agreement with experiments. The claim is made that the theory does not contain any arbitrary adjustable parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider a sphere immersed in a rarefied monatomic gas with zero mean flow. The distribution function of the molecules at infinity is chosen to be a Maxwellian. The boundary condition at the body is diffuse reflection with perfect accommodation to the surface temperature. The microscopic flow of particles about the sphere is modeled kinetically by the Boltzmann equation with the Krook collision term. Appropriate normalizations in the near and far fields lead to a perturbation solution of the problem, expanded in terms of the ratio of body diameter to mean free path (inverse Knudsen number). The distribution function is found directly in each region, and intermediate matching is demonstrated. The heat transfer from the sphere is then calculated as an integral over this distribution function in the inner region. Final results indicate that the heat transfer may at first increase over its free flow value before falling to the continuum level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have applied the Schwinger Multichannel Method(SMC) to the study of electronically inelastic, low energy electron-molecule collisions. The focus of these studies has been the assessment of the importance of multichannel coupling to the dynamics of these excitation processes. It has transpired that the promising quality of results realized in early SMC work on such inelastic scattering processes has been far more difficult to obtain in these more sophisticated studies.

We have attempted to understand the sources of instability of the SMC method which are evident in these multichannel studies. Particular instances of such instability have been considered in detail, which indicate that linear dependence, failure of the separable potential approximation, and difficulties in converging matrix elements involving recorrelation or Q-space terms all conspire to complicate application of the SMC method to these studies. A method involving singular value decomposition(SVD) has been developed to, if not resolve these problems, at least mitigate their deleterious effects on the computation of electronically inelastic cross sections.

In conjunction with this SVD procedure, the SMC method has been applied to the study of the H_2 , H_2O, and N_2 molecules. Rydberg excitations of the first two molecules were found to be most sensitive to multichannel coupling near threshold. The (3σ_g → 1π_g ) and (1π_u → 1π_g) valence excitations of the N_2 molecule were found to be strongly influenced by the choice of channel coupling scheme at all collision energies considered in these studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores the problem of mobile robot navigation in dense human crowds. We begin by considering a fundamental impediment to classical motion planning algorithms called the freezing robot problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing approaches have focused on reducing predictive uncertainty by employing higher fidelity individual dynamics models or heuristically limiting the individual predictive covariance to prevent overcautious navigation. We demonstrate that both the individual prediction and the individual predictive uncertainty have little to do with this undesirable navigation behavior. Additionally, we provide evidence that dynamic agents are able to navigate in dense crowds by engaging in joint collision avoidance, cooperatively making room to create feasible trajectories. We accordingly develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a "multiple goal" extension that models the goal driven nature of human decision making. Navigation naturally emerges as a statistic of this distribution.

Most importantly, we empirically validate our models in the Chandler dining hall at Caltech during peak hours, and in the process, carry out the first extensive quantitative study of robot navigation in dense human crowds (collecting data on 488 runs). The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 1 person/m2, while a state of the art noncooperative planner exhibits unsafe behavior more than 3 times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our noncooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. For inclusive validation purposes, we show that either our non-interacting planner or our reactive planner captures the salient characteristics of nearly any existing dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.

Finally, we produce a large database of ground truth pedestrian crowd data. We make this ground truth database publicly available for further scientific study of crowd prediction models, learning from demonstration algorithms, and human robot interaction models in general.