994 resultados para Climatic classification
Resumo:
There is a multitude of ecosystem service classifications available within the literature, each with its own advantages and drawbacks. Elements of them have been used to tailor a generic ecosystem service classification for the marine environment and then for a case study site within the North Sea: the Dogger Bank. Indicators for each of the ecosystem services, deemed relevant to the case study site, were identified. Each indicator was then assessed against a set of agreed criteria to ensure its relevance and applicability to environmental management. This paper identifies the need to distinguish between indicators of ecosystem services that are entirely ecological in nature (and largely reveal the potential of an ecosystem to provide ecosystem services), indicators for the ecological processes contributing to the delivery of these services, and indicators of benefits that reveal the realized human use or enjoyment of an ecosystem service. It highlights some of the difficulties faced in selecting meaningful indicators, such as problems of specificity, spatial disconnect and the considerable uncertainty about marine species, habitats and the processes, functions and services they contribute to.
Resumo:
The effect of different factors (spawning biomass, environmental conditions) on recruitment is a subject of great importance in the management of fisheries, recovery plans and scenario exploration. In this study, recently proposed supervised classification techniques, tested by the machine-learning community, are applied to forecast the recruitment of seven fish species of North East Atlantic (anchovy, sardine, mackerel, horse mackerel, hake, blue whiting and albacore), using spawning, environmental and climatic data. In addition, the use of the probabilistic flexible naive Bayes classifier (FNBC) is proposed as modelling approach in order to reduce uncertainty for fisheries management purposes. Those improvements aim is to improve probability estimations of each possible outcome (low, medium and high recruitment) based in kernel density estimation, which is crucial for informed management decision making with high uncertainty. Finally, a comparison between goodness-of-fit and generalization power is provided, in order to assess the reliability of the final forecasting models. It is found that in most cases the proposed methodology provides useful information for management whereas the case of horse mackerel is an example of the limitations of the approach. The proposed improvements allow for a better probabilistic estimation of the different scenarios, i.e. to reduce the uncertainty in the provided forecasts.
Resumo:
Los agrietamientos poligonales representan una forma común de modelado granítico cuyo origen y evolución continúa en fase de estudio, no existiendo una sistematización de estas estructuras diversas. Algunos autores explican su origen por procesos geodinámicos internos, relacionándolo con movimientos de planos de fractura en estados tardíos de consolidación magmática. Otros autores atribuyen su formación y desarrollo a factores externos relacionados con el régimen climático. La gran variedad de agrietamientos poligonales requiere la utilización de un número mayor de variables para definir los distintos orígenes, y las posibles interrelaciones entre los factores externos e internos, así como para explicar la evolución de dichas estructuras y avanzar en la clasificación de los patrones concretos. Este trabajo pretende contribuir a sistematizar los mecanismos que intervienen en el desarrollo de agrietamientos poligonales. Para ello se estudian únicamente agrietamientos poligonales formados sobre planos de fractura verticales o subverticales. En particular se establecen relaciones entre la presencia de agrietamientos poligonales y la red de fracturación, la altura de aparición, la orientación e inclinación de la pared, la morfología de las placas y la profundidad de incisión de las grietas perimetrales. Por otra parte, establece relaciones entre procesos geodinámicos internos y procesos de meteorización externos.
Resumo:
Previous studies have revealed considerable interobserver and intraobserver variation in the histological classification of preinvasive cervical squamous lesions. The aim of the present study was to develop a decision support system (DSS) for the histological interpretation of these lesions. Knowledge and uncertainty were represented in the form of a Bayesian belief network that permitted the storage of diagnostic knowledge and, for a given case, the collection of evidence in a cumulative manner that provided a final probability for the possible diagnostic outcomes. The network comprised 8 diagnostic histological features (evidence nodes) that were each independently linked to the diagnosis (decision node) by a conditional probability matrix. Diagnostic outcomes comprised normal; koilocytosis; and cervical intraepithelial neoplasia (CIN) 1, CIN II, and CIN M. For each evidence feature, a set of images was recorded that represented the full spectrum of change for that feature. The system was designed to be interactive in that the histopathologist was prompted to enter evidence into the network via a specifically designed graphical user interface (i-Path Diagnostics, Belfast, Northern Ireland). Membership functions were used to derive the relative likelihoods for the alternative feature outcomes, the likelihood vector was entered into the network, and the updated diagnostic belief was computed for the diagnostic outcomes and displayed. A cumulative probability graph was generated throughout the diagnostic process and presented on screen. The network was tested on 50 cervical colposcopic biopsy specimens, comprising 10 cases each of normal, koilocytosis, CIN 1, CIN H, and CIN III. These had been preselected by a consultant gynecological pathologist. Using conventional morphological assessment, the cases were classified on 2 separate occasions by 2 consultant and 2 junior pathologists. The cases were also then classified using the DSS on 2 occasions by the 4 pathologists and by 2 medical students with no experience in cervical histology. Interobserver and intraobserver agreement using morphology and using the DSS was calculated with K statistics. Intraobserver reproducibility using conventional unaided diagnosis was reasonably good (kappa range, 0.688 to 0.861), but interobserver agreement was poor (kappa range, 0.347 to 0.747). Using the DSS improved overall reproducibility between individuals. Using the DSS, however, did not enhance the diagnostic performance of junior pathologists when comparing their DSS-based diagnosis against an experienced consultant. However, the generation of a cumulative probability graph also allowed a comparison of individual performance, how individual features were assessed in the same case, and how this contributed to diagnostic disagreement between individuals. Diagnostic features such as nuclear pleomorphism were shown to be particularly problematic and poorly reproducible. DSSs such as this therefore not only have a role to play in enhancing decision making but also in the study of diagnostic protocol, education, self-assessment, and quality control. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their non-deterministic performance. Although CAMs are favoured by technology vendors due to their deterministic high lookup rates, they suffer from the problems of high power dissipation and high silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multi-level cutting the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Resumo:
Grey Level Co-occurrence Matrix (GLCM), one of the best known tool for texture analysis, estimates image properties related to second-order statistics. These image properties commonly known as Haralick texture features can be used for image classification, image segmentation, and remote sensing applications. However, their computations are highly intensive especially for very large images such as medical ones. Therefore, methods to accelerate their computations are highly desired. This paper proposes the use of programmable hardware to accelerate the calculation of GLCM and Haralick texture features. Further, as an example of the speedup offered by programmable logic, a multispectral computer vision system for automatic diagnosis of prostatic cancer has been implemented. The performance is then compared against a microprocessor based solution.