903 resultados para Clc Proteins
Resumo:
Lipid droplets (LDs) are the universal storage form of fat as a reservoir of metabolic energy in animals, plants, bacteria and single celled eukaryotes. Dictyostelium LD formation was investigated in response to the addition of different nutrients to the growth medium. LDs were induced by adding exogenous cholesterol, palmitic acid (PA) as well as growth in bacterial suspension, while glucose addition fails to form LDs. Among these nutrients, PA addition is most effective to stimulate LD formation, and depletion of PA from the medium caused LD degradation. The neutral lipids incorporated into the LD-core are composed of triacylglycerol (TAG), steryl esters, and an unknown neutral lipid (UKL) species when the cells were loaded simultaneously with cholesterol and PA. In order to avoid the contamination with other cellular organelles, the LD-purification method was modified. The isolated LD fraction was analysed by mass spectrometry and 100 proteins were identified. Nineteen of these appear to be directly involved in lipid metabolism or function in regulating LD morphology. Together with a previous study, a total of 13 proteins from the LD-proteome were confirmed to localize to LDs after the induction with PA. Among the identified LD-proteins, the localization of Ldp (lipid droplet membrane protein), GPAT3 (glycerol-3-phosphate acyltransferase 3) and AGPAT3 (1-acylglycerol-3-phosphate-acyltransferase 3) were further verified by GFP-tagging at the N-termini or C-termini of the respective proteins. Fluorescence microscopy demonstrated that PA-treatment stimulated the translocation of the three proteins from the ER to LDs. In order to clarify DGAT (diacylglycerol acyltransferase) function in Dictyostelium, the localization of DGAT1, that is not present in LD-proteome, was also investigated. GFP-tagged DGAT1 localized to the ER both, in the presence and absence of PA, which is different from the previously observed localization of GFP-tagged DGAT2, which almost exclusively binds to LDs. The investigation of the cellular neutral lipid level helps to elucidate the mechanism responsible for LD-formation in Dictyostelium cells. Ldp and two short-chain dehydrogenases, ADH (alcohol dehydrogenase) and Ali (ADH-like protein), are not involved in neutral lipid biosynthesis. GPAT, AGPAT and DGAT are three transferases responsible for the three acylation steps of de novo TAG synthesis. Knock-out (KO) of AGPAT3 and DGAT2 did not affect storage-fat formation significantly, whereas cells lacking GPAT3 or DGAT1 decreased TAG and LD accumulation dramatically. Furthermore, DGAT1 is responsible for the accumulation of the unknown lipid UKL. Overexpression of DGAT2 can rescue the reduced TAG content of the DGAT1-KO mutant, but fails to restore UKL content in these cells, indicating that of DGAT1 and DGAT2 have overlapping functions in TAG synthesis, but the role in UKL formation is unique to DGAT1. Both GPAT3 and DGAT1 affect phagocytic activity. Mutation of GPAT3 increases it but a DGAT1-KO decreases phagocytosis. The double knockout of DGAT1 and 2 also impairs the ability to grow on a bacterial lawn, which again can be rescued by overexpression of DGAT2. These and other results are incorporated into a new model, which proposes that up-regulation of phagocytosis serves to replenish precursor molecules of membrane lipid synthesis, whereas phagocytosis is down-regulated when excess fatty acids are used for storage-fat formation.
Resumo:
This thesis describes several important advancements in the understanding of the assembly of outer membrane proteins of Gram-negative bacteria like Escherichia coli. A first study was performed to identify binding regions in the trimeric chaperone Skp for outer membrane proteins. Skp is known to facilitate the passage of unfolded outer membrane proteins (OMPs) through the periplasm to the outer membrane (OM). A gene construct named “synthetic chaperone protein (scp)” gene was used to express a fusion protein (Scp) into the cytoplasm of E. coli. The scp gene was used as a template to design mutants of Scp suitable for structural and functional studies using site-directed spectroscopy. Fluorescence resonance energy transfer (FRET) was used to identify distances in Skp-OmpA complexes that separate regions in Scp and in outer membrane protein A (OmpA) from E. coli. For this study, single cysteine (Cys) mutants and single Cys - single tryptophan (Trp) double mutants of Scp were prepared. For FRET experiments, the cysteines were labeled with the tryptophan fluorescence energy acceptor IAEDANS. Single Trp mutants of OmpA were used as fluorescence energy donors. In the second part of this thesis, the function of BamD and the structure of BamD-Scp complexes were examined. BamD is an essential component of the β-barrel assembly machinery (BAM) complex of the OM of Gram-negative bacteria. Fluorescence spectroscopy was used to probe the interactions of BamD with lipid membranes and to investigate the interactions of BamD with possible partner proteins from the periplasm and from the OM. A range of single cysteine (Cys) and single tryptophan (Trp) mutants of BamD were prepared. A very important conclusion from the extensive FRET study is that the essential lipoprotein BamD interacts and binds to the periplasmic chaperone Skp. BamD contains tetratrico peptide repeat (TPR) motifs that are suggested to serve as docking sites for periplasmic chaperones such as Skp.
Resumo:
Das ursprünglich in S. cerevisiae identifizierte Urm1 stellt aufgrund seiner dualen Funktionsweise ein besonderes UBL dar. In einem Prozess, der als Urmylierung bezeichnet wird, kann es ähnlich dem Ubiquitin kovalent mit anderen Proteinen verknüpft werden. Zusätzlich fungiert es aber auch als Schwefelträger, der an der Thiolierung des wobble-Uridins bestimmter cytoplasmatischer tRNAs beteiligt ist. Während neuere Untersuchungen zeigen, dass die Urm1-abhängige tRNA-Thiolierung zu einer effizienten Translation in Eukaryoten beiträgt, ist die Bedeutung der Urmylierung immer noch unklar. Um die Funktion der Urm1-vermittelten Proteinmodifikation weiter aufzuklären, wurde die Urmylierung des Peroxiredoxins Ahp1 im Rahmen dieser Arbeit näher untersucht. Es konnte demonstriert werden, dass Ahp1 nicht nur als Monomer, sondern auch als Dimer urmyliert vorliegt. Dies deutet darauf hin, dass die Urmylierung mit dem peroxidatischen Zyklus von Ahp1 verknüpft ist. Diese Annahme konnte durch die Untersuchung der Modifikation verschiedener ahp1-Punktmutanten bestätigt werden. Hierbei ließ sich ebenfalls zeigen, dass das Peroxiredoxin wahrscheinlich auch an alternativen Lysinresten urmyliert werden kann. Trotzdem bleibt unklar, inwiefern die Funktionalität von Ahp1 durch die Urm1-Konjugation beeinträchtigt wird. So konnte ein Einfluss der Urmylierung auf die Ahp1-vermittelte Entgiftung des Alkylhydroperoxids t-BOOH nicht festgestellt werden. Ein weiterer Schwerpunkt dieser Arbeit war die Untersuchung einer möglichen mechanistischen Verknüpfung beider Urm1-Funktionen. Es ließ sich zeigen, dass nicht nur Schwefelmangel, sondern auch ein Verlust der Schwefeltransferase Tum1 zu einer drastischen Reduktion der Urm1-Konjugation führt. Demnach wird die Urmylierung wahrscheinlich über denselben Schwefeltransferweg vermittelt, der ebenfalls zur tRNA-Thiolierung beiträgt. Trotzdem ist der Schwefeltransfer, der zur Urm1-Aktivierung führt, womöglich komplexer als bisher angenommen. Wurden die vermuteten katalytischen Cysteine des Urm1-Aktivatorproteins Uba4 mutiert oder dessen C-terminale RHD entfernt, waren eine gehemmte Urmylierung und tRNA-Thiolierung weiterhin nachweisbar. Somit scheint ein Schwefeltransfer auf Urm1 auch ohne direkte Beteiligung von Uba4 möglich zu sein. In dieser Arbeit ließ sich außerdem zeigen, dass Urm1 in Hefe durch sein humanes Homolog funktional ersetzt werden kann. Dies ist ein Hinweis dafür, dass der Urm1-Weg in allen Eukaryoten gleich funktioniert und konserviert ist. Darüber hinaus scheint für die Urmylierung auch eine Konservierung der Substratspezifität gegeben zu sein. Der Nachweis einer Uba4-Urmylierung in Hefe könnte durchaus darauf hindeuten.
Resumo:
Background Plasmodium vivax is one of the five species causing malaria in human beings, affecting around 391 million people annually. The development of an anti-malarial vaccine has been proposed as an alternative for controlling this disease. However, its development has been hampered by allele-specific responses produced by the high genetic diversity shown by some parasite antigens. Evaluating these antigens’ genetic diversity is thus essential when designing a completely effective vaccine. Methods The gene sequences of Plasmodium vivax p12 (pv12) and p38 (pv38), obtained from field isolates in Colombia, were used for evaluating haplotype polymorphism and distribution by population genetics analysis. The evolutionary forces generating the variation pattern so observed were also determined. Results Both pv12 and pv38 were shown to have low genetic diversity. The neutral model for pv12 could not be discarded, whilst polymorphism in pv38 was maintained by balanced selection restricted to the gene’s 5′ region. Both encoded proteins seemed to have functional/structural constraints due to the presence of s48/45 domains, which were seen to be highly conserved.
Resumo:
Background: This study describes a bioinformatics approach designed to identify Plasmodium vivax proteins potentially involved in reticulocyte invasion. Specifically, different protein training sets were built and tuned based on different biological parameters, such as experimental evidence of secretion and/or involvement in invasion-related processes. A profile-based sequence method supported by hidden Markov models (HMMs) was then used to build classifiers to search for biologically-related proteins. The transcriptional profile of the P. vivax intra-erythrocyte developmental cycle was then screened using these classifiers. Results: A bioinformatics methodology for identifying potentially secreted P. vivax proteins was designed using sequence redundancy reduction and probabilistic profiles. This methodology led to identifying a set of 45 proteins that are potentially secreted during the P. vivax intra-erythrocyte development cycle and could be involved in cell invasion. Thirteen of the 45 proteins have already been described as vaccine candidates; there is experimental evidence of protein expression for 7 of the 32 remaining ones, while no previous studies of expression, function or immunology have been carried out for the additional 25. Conclusions: The results support the idea that probabilistic techniques like profile HMMs improve similarity searches. Also, different adjustments such as sequence redundancy reduction using Pisces or Cd-Hit allowed data clustering based on rational reproducible measurements. This kind of approach for selecting proteins with specific functions is highly important for supporting large-scale analyses that could aid in the identification of genes encoding potential new target antigens for vaccine development and drug design. The present study has led to targeting 32 proteins for further testing regarding their ability to induce protective immune responses against P. vivax malaria.
Resumo:
Els pacients amb càncer presenten una taxa de supervivència superior si es diagnostiquen a estadis inicials, per la qual cosa és indispensable disposar de marcadors tumorals adequats. Glicoformes de proteïnes específiques es podrian utilizar com marcadors tumorals. S’han investigat les subformes i glicosilació de l’Antígen Prostàtic Específic (PSA) per millorar la seva capacitat de diagnosis de pacients amb càncer de pròstata vs aquells amb hiperplàsia benigna prostàtica. També s’han avaluat glicoproteïnes sèriques amb alteracions glucídiques en pacients de càncer de pàncrees, comparat amb pacients amb pancreatitis crònica i controls. S’ha observat una disminució de la fucosilació core i sialilació del PSA en càncer de pròstata i un augment de la fucosilació core i Sialyl-Lewis X en algunes Proteïnes de fase Aguda en càncer de pàncrees. Aquest canvis s’haurien d’avaluar en un cohort de pacients més gran per determinar el seu paper en el cribratge, diagnòstic o monitorització dels cancers estudiats.
Resumo:
The recent discovery of synuclein proteins in peripheral auditory tissues has prompted a closer examination of the role of these proteins in hearing. In the present study, auditory brainstem response thresholds of synuclein knockout mice are compared to wild type mice.
Resumo:
Alpha-synuclein is found in synaptic terminals at the base of both inner and outer hair cells, while the beta isoform is prominently localized to spiral ganglion neuron cell bodies. The present study assessed the role of beta-synuclein in auditory function, and potential interactions between isoforms.
Resumo:
The eukaryotic nucleolus is multifunctional and involved in the metabolism and assembly of many different RNAs and ribonucleoprotein particles as well as in cellular functions, such as cell division and transcriptional silencing in plants. We previously showed that Arabidopsis thaliana exon junction complex proteins associate with the nucleolus, suggesting a role for the nucleolus in mRNA production. Here, we report that the plant nucleolus contains mRNAs, including fully spliced, aberrantly spliced, and single exon gene transcripts. Aberrant mRNAs are much more abundant in nucleolar fractions, while fully spliced products are more abundant in nucleoplasmic fractions. The majority of the aberrant transcripts contain premature termination codons and have characteristics of nonsense-mediated decay (NMD) substrates. A direct link between NMD and the nucleolus is shown by increased levels of the same aberrant transcripts in both the nucleolus and in Up-frameshift (upf) mutants impaired in NMD. In addition, the NMD factors UPF3 and UPF2 localize to the nucleolus, suggesting that the Arabidopsis nucleolus is therefore involved in identifying aberrant mRNAs and NMD.
Resumo:
Binding parameters for the interactions of four types of tannins: tea catechins, grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins,and sorghum procyanidins (mDP=17), with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction with gelatin were in the range 10(4) to 10(6) M-1 and in the order: sorghum procyanidins > grape seed proanthocyanidins > mimosa 5-deoxy proanthocyanidins > tea catechins. Interaction with BSA was generally weaker, with equilibrium binding constants of <= 10(3) M-1 for grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins and tea catechins, and 10(4) M-1 for the sorghum procyanidins. In all cases the interactions with proteins were exothermic and involved multiple binding sites on the protein. The data are discussed in relation to the structures and the known nutritional effects of the condensed tannins.
Resumo:
The cupin superfamily is a group of functionally diverse proteins that are found in all three kingdoms of life, Archaea, Eubacteria, and Eukaryota. These proteins have a characteristic signature domain comprising two histidine- containing motifs separated by an intermotif region of variable length. This domain consists of six beta strands within a conserved beta barrel structure. Most cupins, such as microbial phosphomannose isomerases (PMIs), AraC- type transcriptional regulators, and cereal oxalate oxidases (OXOs), contain only a single domain, whereas others, such as seed storage proteins and oxalate decarboxylases (OXDCs), are bi-cupins with two pairs of motifs. Although some cupins have known functions and have been characterized at the biochemical level, the majority are known only from gene cloning or sequencing projects. In this study, phylogenetic analyses were conducted on the conserved domain to investigate the evolution and structure/function relationships of cupins, with an emphasis on single- domain plant germin-like proteins (GLPs). An unrooted phylogeny of cupins from a wide spectrum of evolutionary lineages identified three main clusters, microbial PMIs, OXDCs, and plant GLPs. The sister group to the plant GLPs in the global analysis was then used to root a phylogeny of all available plant GLPs. The resulting phylogeny contained three main clades, classifying the GLPs into distinct subfamilies. It is suggested that these subfamilies correlate with functional categories, one of which contains the bifunctional barley germin that has both OXO and superoxide dismutase (SOD) activity. It is proposed that GLPs function primarily as SODs, enzymes that protect plants from the effects of oxidative stress. Closer inspection of the DNA sequence encoding the intermotif region in plant GLPs showed global conservation of thymine in the second codon position, a character associated with hydrophobic residues. Since many of these proteins are multimeric and enzymatically inactive in their monomeric state, this conservation of hydrophobicity is thought to be associated with the need to maintain the various monomer- monomer interactions. The type of structure-based predictive analysis presented in this paper is an important approach for understanding gene function and evolution in an era when genomes from a wide range of organisms are being sequenced at a rapid rate.
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
The oxalate oxidase enzyme expressed in barley roots is a thermostable, protease-resistant enzyme that generates H2O2. It has great medical importance because of its use to assay plasma and urinary oxalate, and it has also been used to generate transgenic, pathogen-resistant crops. This protein has now been purified and three types of crystals grown. X-ray analysis shows that the symmetry present in these crystals is consistent with a hexameric arrangement of subunits, probably a trimer of dimers. This structure may be similar to that found in the related seed storage proteins.