923 resultados para Classification errors
Resumo:
Les naines brunes sont des objets de masse intermédiaire entre celle nécessaire pour former une étoile et celle d'une planète. Les naines brunes sont classées, des plus chaudes aux plus froides, en types spectraux L, T et Y, caractérisés par une couleur J-K moyenne qui varie de 1.2 à 1.8 pour les étoiles de type L0 à L8, et de 1.8 à -0.5 pour les étoiles de type L8 à T8. Par ailleurs, la couleur J-K de certains types spectraux présente une dispersion de l'ordre d'une magnitude. Ce travail tente de faire la lumière sur la nature de cette grande dispersion, présente dans la couleur J-K des naines brunes de type L2. Les observations ont été réalisées avec la caméra infrarouge CPAPIR à l'Observatoire du Mont Mégantic. Nous avons ciblé un total de 22 naines brunes qui ont été observées en K, et 12 parmi celles-ci ont aussi été observées en J. Chacune des naines brunes a été calibrée à l'aide d'une étoile standard, ce qui rend nos résultats indépendants des données 2MASS. Nous observons une corrélation entre les couleurs J-K de nos données et de celles de 2MASS. Cela montre que la grande dispersion en J-K de nos données et des données 2MASS est due aux propriétés physiques des naines brunes et non à des erreurs observationnelles. L'examen des facteurs qui pourraient être responsables de cette grande dispersion, soit la classification spectrale, la métallicité, la gravité de surface, une binarité non résolue, la présence de nuages de condensats et la rotation, montre que la gravité de surface serait le facteur le plus susceptible d'être responsable de la grande dispersion des valeurs de J-K.
Resumo:
Thèse réalisée en cotutelle France- Québec
Resumo:
Les écologistes reconnaissent depuis longtemps que les organismes sont soutenus par le flux, l’emmagasinage et le renouvellement d’énergie et de matériel de l’écosystème, puisqu’ils sont nécessaires au métabolisme biologique et à la construction de biomasse. L’importance des organismes dans la régularisation des processus écosystémiques est maintenant de plus en plus considérée. Situé au centre des chaînes trophiques aquatiques, le zooplancton influence les flux d’énergie et de matériel dans les écosystèmes. Plusieurs de leurs caractéristiques sont connues comme étant de bons indicateurs de leur effet sur l’environnement, notamment leur taille, contenu corporel et taux métabolique. La plupart de ces caractéristiques peuvent être appelées « traits fonctionnels ». Alors que l’emploi des traits devient de plus en plus populaire en écologie des communautés aquatiques, peu ont su utiliser cette approche afin de concrètement lier la structure des communautés zooplanctoniques aux processus écosystémiques. Dans cette étude, nous avons colligé les données provenant d’une grande variété de littérature afin de construire une base de données sur les traits du zooplancton crustacé contribuant directement ou indirectement aux flux de C, N et P dans les écosystèmes. Notre méta-analyse a permis d’assembler plus de 9000 observations sur 287 espèces et d’identifier par le fait même ce qu’il manque à nos connaissances. Nous avons examiné une série de corrélations croisées entre 16 traits, dont 35 étaient significatives, et avons exploré les relations entre les unités taxonomiques de même qu’entre les espèces marines et d’eaux douces. Notre synthèse a entre autres révélé des patrons significativement différents entre le zooplancton marin et dulcicole quant à leur taux de respiration et leur allométrie (masse vs. longueur corporelle). Nous proposons de plus une nouvelle classification de traits liant les fonctions des organismes à celles de l’écosystème. Notre but est d’offrir une base de données sur les traits du zooplancton, des outils afin de mieux lier les organismes aux processus écosystémiques et de stimuler la recherche de patrons généraux et de compromis entre les traits.
Resumo:
Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.
Resumo:
Chaque jour, des décisions doivent être prises quant à la quantité d'hydroélectricité produite au Québec. Ces décisions reposent sur la prévision des apports en eau dans les bassins versants produite à l'aide de modèles hydrologiques. Ces modèles prennent en compte plusieurs facteurs, dont notamment la présence ou l'absence de neige au sol. Cette information est primordiale durant la fonte printanière pour anticiper les apports à venir, puisqu'entre 30 et 40% du volume de crue peut provenir de la fonte du couvert nival. Il est donc nécessaire pour les prévisionnistes de pouvoir suivre l'évolution du couvert de neige de façon quotidienne afin d'ajuster leurs prévisions selon le phénomène de fonte. Des méthodes pour cartographier la neige au sol sont actuellement utilisées à l'Institut de recherche d'Hydro-Québec (IREQ), mais elles présentent quelques lacunes. Ce mémoire a pour objectif d'utiliser des données de télédétection en micro-ondes passives (le gradient de températures de brillance en position verticale (GTV)) à l'aide d'une approche statistique afin de produire des cartes neige/non-neige et d'en quantifier l'incertitude de classification. Pour ce faire, le GTV a été utilisé afin de calculer une probabilité de neige quotidienne via les mélanges de lois normales selon la statistique bayésienne. Par la suite, ces probabilités ont été modélisées à l'aide de la régression linéaire sur les logits et des cartographies du couvert nival ont été produites. Les résultats des modèles ont été validés qualitativement et quantitativement, puis leur intégration à Hydro-Québec a été discutée.
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tridimensionnelle (3D) de la colonne vertébrale. Pour la plupart des patients atteints de SIA, aucun traitement chirurgical n’est nécessaire. Lorsque la déformation devient sévère, un traitement chirurgical visant à réduire la déformation est recommandé. Pour déterminer la sévérité de la SIA, l’imagerie la plus utilisée est une radiographie postéroantérieure (PA) ou antéro-postérieure (AP) du rachis. Plusieurs indices sont disponibles à partir de cette modalité d’imagerie afin de quantifier la déformation de la SIA, dont l’angle de Cobb. La conduite thérapeutique est généralement basée sur cet indice. Cependant, les indices disponibles à cette modalité d’imagerie sont de nature bidimensionnelle (2D). Celles-ci ne décrivent donc pas entièrement la déformation dans la SIA dû à sa nature tridimensionnelle (3D). Conséquemment, les classifications basées sur les indices 2D souffrent des mêmes limitations. Dans le but décrire la SIA en 3D, la torsion géométrique a été étudiée et proposée par Poncet et al. Celle-ci mesure la tendance d’une courbe tridimensionnelle à changer de direction. Cependant, la méthode proposée est susceptible aux erreurs de reconstructions 3D et elle est calculée localement au niveau vertébral. L’objectif de cette étude est d’évaluer une nouvelle méthode d’estimation de la torsion géométrique par l’approximation de longueurs d’arcs locaux et par paramétrisation de courbes dans la SIA. Une première étude visera à étudier la sensibilité de la nouvelle méthode présentée face aux erreurs de reconstructions 3D du rachis. Par la suite, deux études cliniques vont présenter la iv torsion géométrique comme indice global et viseront à démontrer l’existence de sous-groupes non-identifiés dans les classifications actuelles et que ceux-ci ont une pertinence clinique. La première étude a évalué la robustesse de la nouvelle méthode d’estimation de la torsion géométrique chez un groupe de patient atteint de la SIA. Elle a démontré que la nouvelle technique est robuste face aux erreurs de reconstructions 3D du rachis. La deuxième étude a évalué la torsion géométrique utilisant cette nouvelle méthode dans une cohorte de patient avec des déformations de type Lenke 1. Elle a démontré qu’il existe deux sous-groupes, une avec des valeurs de torsion élevées et l’autre avec des valeurs basses. Ces deux sous-groupes possèdent des différences statistiquement significatives, notamment au niveau du rachis lombaire avec le groupe de torsion élevée ayant des valeurs d’orientation des plans de déformation maximales (PMC) en thoraco-lombaire (TLL) plus élevées. La dernière étude a évalué les résultats chirurgicaux de patients ayant une déformation Lenke 1 sous-classifiées selon les valeurs de torsion préalablement. Cette étude a pu démontrer des différences au niveau du PMC au niveau thoraco-lombaire avec des valeurs plus élevées en postopératoire chez les patients ayant une haute torsion. Ces études présentent une nouvelle méthode d’estimation de la torsion géométrique et présentent cet indice quantitativement. Elles ont démontré l’existence de sous-groupes 3D basés sur cet indice ayant une pertinence clinique dans la SIA, qui n’étaient pas identifiés auparavant. Ce projet contribue dans la tendance actuelle vers le développement d’indices 3D et de classifications 3D pour la scoliose idiopathique de l’adolescent.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.
Resumo:
A new procedure for the classification of lower case English language characters is presented in this work . The character image is binarised and the binary image is further grouped into sixteen smaller areas ,called Cells . Each cell is assigned a name depending upon the contour present in the cell and occupancy of the image contour in the cell. A data reduction procedure called Filtering is adopted to eliminate undesirable redundant information for reducing complexity during further processing steps . The filtered data is fed into a primitive extractor where extraction of primitives is done . Syntactic methods are employed for the classification of the character . A decision tree is used for the interaction of the various components in the scheme . 1ike the primitive extraction and character recognition. A character is recognized by the primitive by primitive construction of its description . Openended inventories are used for including variants of the characters and also adding new members to the general class . Computer implementation of the proposal is discussed at the end using handwritten character samples . Results are analyzed and suggestions for future studies are made. The advantages of the proposal are discussed in detail .
Resumo:
After skin cancer, breast cancer accounts for the second greatest number of cancer diagnoses in women. Currently the etiologies of breast cancer are unknown, and there is no generally accepted therapy for preventing it. Therefore, the best way to improve the prognosis for breast cancer is early detection and treatment. Computer aided detection systems (CAD) for detecting masses or micro-calcifications in mammograms have already been used and proven to be a potentially powerful tool , so the radiologists are attracted by the effectiveness of clinical application of CAD systems. Fractal geometry is well suited for describing the complex physiological structures that defy the traditional Euclidean geometry, which is based on smooth shapes. The major contribution of this research include the development of • A new fractal feature to accurately classify mammograms into normal and normal (i)With masses (benign or malignant) (ii) with microcalcifications (benign or malignant) • A novel fast fractal modeling method to identify the presence of microcalcifications by fractal modeling of mammograms and then subtracting the modeled image from the original mammogram. The performances of these methods were evaluated using different standard statistical analysis methods. The results obtained indicate that the developed methods are highly beneficial for assisting radiologists in making diagnostic decisions. The mammograms for the study were obtained from the two online databases namely, MIAS (Mammographic Image Analysis Society) and DDSM (Digital Database for Screening Mammography.
Resumo:
The results of an investigation on the limits of the random errors contained in the basic data of Physical Oceanography and their propagation through the computational procedures are presented in this thesis. It also suggest a method which increases the reliability of the derived results. The thesis is presented in eight chapters including the introductory chapter. Chapter 2 discusses the general theory of errors that are relevant in the context of the propagation of errors in Physical Oceanographic computations. The error components contained in the independent oceanographic variables namely, temperature, salinity and depth are deliniated and quantified in chapter 3. Chapter 4 discusses and derives the magnitude of errors in the computation of the dependent oceanographic variables, density in situ, gt, specific volume and specific volume anomaly, due to the propagation of errors contained in the independent oceanographic variables. The errors propagated into the computed values of the derived quantities namely, dynamic depth and relative currents, have been estimated and presented chapter 5. Chapter 6 reviews the existing methods for the identification of level of no motion and suggests a method for the identification of a reliable zero reference level. Chapter 7 discusses the available methods for the extension of the zero reference level into shallow regions of the oceans and suggests a new method which is more reliable. A procedure of graphical smoothening of dynamic topographies between the error limits to provide more reliable results is also suggested in this chapter. Chapter 8 deals with the computation of the geostrophic current from these smoothened values of dynamic heights, with reference to the selected zero reference level. The summary and conclusion are also presented in this chapter.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Measurement is the act or the result of a quantitative comparison between a given quantity and a quantity of the same kind chosen as a unit. It is generally agreed that all measurements contain errors. In a measuring system where both a measuring instrument and a human being taking the measurement using a preset process, the measurement error could be due to the instrument, the process or the human being involved. The first part of the study is devoted to understanding the human errors in measurement. For that, selected person related and selected work related factors that could affect measurement errors have been identified. Though these are well known, the exact extent of the error and the extent of effect of different factors on human errors in measurement are less reported. Characterization of human errors in measurement is done by conducting an experimental study using different subjects, where the factors were changed one at a time and the measurements made by them recorded. From the pre‐experiment survey research studies, it is observed that the respondents could not give the correct answers to questions related to the correct values [extent] of human related measurement errors. This confirmed the fears expressed regarding lack of knowledge about the extent of human related measurement errors among professionals associated with quality. But in postexperiment phase of survey study, it is observed that the answers regarding the extent of human related measurement errors has improved significantly since the answer choices were provided based on the experimental study. It is hoped that this work will help users of measurement in practice to better understand and manage the phenomena of human related errors in measurement.
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.