819 resultados para Classification Protocols
Resumo:
Changes in the angle of illumination incident upon a 3D surface texture can significantly alter its appearance, implying variations in the image texture. These texture variations produce displacements of class members in the feature space, increasing the failure rates of texture classifiers. To avoid this problem, a model-based texture recognition system which classifies textures seen from different distances and under different illumination directions is presented in this paper. The system works on the basis of a surface model obtained by means of 4-source colour photometric stereo, used to generate 2D image textures under different illumination directions. The recognition system combines coocurrence matrices for feature extraction with a Nearest Neighbour classifier. Moreover, the recognition allows one to guess the approximate direction of the illumination used to capture the test image
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques
Resumo:
A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach
Strategies of psychological terrorism perpetrated by ETA's network : Delimitation and classification
Resumo:
Resumen tomado de la publicaci??n
Resumo:
This paper focuses on QoS routing with protection in an MPLS network over an optical layer. In this multi-layer scenario each layer deploys its own fault management methods. A partially protected optical layer is proposed and the rest of the network is protected at the MPLS layer. New protection schemes that avoid protection duplications are proposed. Moreover, this paper also introduces a new traffic classification based on the level of reliability. The failure impact is evaluated in terms of recovery time depending on the traffic class. The proposed schemes also include a novel variation of minimum interference routing and shared segment backup computation. A complete set of experiments proves that the proposed schemes are more efficient as compared to the previous ones, in terms of resources used to protect the network, failure impact and the request rejection ratio
Resumo:
A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours
Resumo:
El estudio realizado se basó en la aplicación de la metodología de investigación científica y el análisis exploratorio, cuantitativo de tipo descriptivo de corte transversal, utilizando análisis de relaciones de datos obtenidos en cada una de las IPS y relaciones de perfiles entre de la población atendida. El análisis de la información mostró que las barreras administrativas de acceso a los servicios de Gineco-Obstetricia existen en las IPS estudiadas, caracterizando fundamentalmente aspectos relacionados con la falta de registro de información en las historias clínicas de los pacientes, la falta de registro de la no asistencia de un paciente a una cita, la inexistencia de acciones registradas frente a la identificación e inscripción de la población objeto de control prenatal con clasificación del riesgo, el régimen de afiliación, la ocupación, las acciones correctivas por fallas en los servicios de salud, el registro de fallas en los servicios de salud y el nivel educativo. Es valiosa la información que es registrada en las historias clínicas, sin embargo las IPS que participaron en el presente estudio no le dan la importancia necesaria a las evidencias obtenidas, en especial frente a acciones correctivas. Las relaciones entre las variables como el número de embarazos, el número de controles prenatales, el número de abortos, las IPS, los perfiles de la población de pacientes, la falta de registro de la no asistencia de un paciente a una cita, la clasificación del riesgo, el número de partos, el estado civil, los grupos de edad, el nivel educativo, el registro de fallas, el registro de las acciones correctivas y la ocupación, permiten identificar barreras de acceso administrativas. Se realizó una entrevista a los líderes de los procesos de calidad o directores generales de las IPS que participaron en el presente estudio y se encontró que los parámetros de calidad son claros y que la información existe en diferentes proporciones y protocolos institucionales. No obstante, las IPS no aplican en su totalidad el modelo de los canones establecidos. Es necesario que las instituciones apliquen las normas de calidad en su totalidad lo que seguramente las llevará a lograr mejores resultados.
Resumo:
An introduction for students intending to design and conduct a survey. This is the prelude to a practical group activity.
Resumo:
Introduction to interview data, how it is used and how and why it might be collected