979 resultados para Class 1 Histocompatibility Molecules


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary sensory olfactory axons arise from the olfactory neuroepithelium that lines the nasal cavity and then project via the olfactory nerve into the olfactory bulb. The P-galactoside binding lectin, galectin-1,and its laminin ligand have been implicated in the growth of these axons along this pathway. In galectin-1 null mutant mice, a subpopulation of primary sensory olfactory axons fails to reach its targets in the olfactory bulb. In the present study we examined the spatiotemporal expression pattern of galectin-1 in normal mice in order to understand its role in the development of the olfactory nerve pathway. At E15.5, when olfactory axons have already contacted the olfactory bulb, galectin-1 was expressed in the cartilage and mesenchyme surrounding the nasal cavity but was absent from the olfactory neuroepithelium, nerve and bulb. Between E16.5 and birth galectin-1 began to be expressed by olfactory nerve ensheathing cells in the lamina propria of the neuroepithelium and nerve fibre layer. Galectin-1 was neither expressed by primary sensory neurons in the olfactory neuroepithelium nor by their axons in the olfactory nerve. Laminin, a galectin-1 ligand, also exhibited a similar expression pattern in the embryonic olfactory nerve pathway. Our results reveal that galectin-1 is dynamically expressed by glial elements within the nerve fibre layer during a discrete period in the developing olfactory nerve pathway. Previous studies have reported galectin-1 acts as a substrate adhesion molecule by cross-linking primary sensory olfactory neurons to laminin. Thus, the coordinate expression of galectin-1 and laminin in the embryonic nerve fibre layer suggests that these molecules support the adhesion and fasciculation of axons en route to their glomerular targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flash vacuum thermolysis (FVT) of triazoles 6a-c generates alpha-oxoketenimines 10, the ester 10a being isolable. FVT of pyrroledione 8 generates the isomeric imidoylketene 9a. Ketenes 9 and ketenimines 10 undergo thermal interconversion by 1,3-shifts of methoxy and dimethylamino groups under mild FVT conditions (ca. 350-400 degrees C). Both 9 and 10 are directly observable by IR spectroscopy at either 77 K or on Ar matrix isolation at 12 K. On FVT at temperatures above ca. 400 degrees C, the ketenimines 10 undergo a 1,5-H shift to o-quinoid imines 12/13, followed by electrocyclization to dihydroquinolines 14 (unobserved) and 15 (observed by NMR). The latter are easily oxidized to alkylquinoline-3-carboxylates or quinoline-3-carboxamides 16 by atmospheric oxygen. Ab initio calculations on model compounds 18-23 predict an energy barrier of ca. 38 kcal mol(-1) (161 kJ mol(-1)) for the 1,5-H shift in N-(o-methylphenyl)ketenimines via the transition state TS19 followed by an electrocyclization barrier to dihydroquinoline 23a via TS22a of ca. 16 kcal mol(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Murine cytomegalovirus (CMV)-encoded protein m144 is homologous to class I MHC heavy-chain and is thought to regulate NK-cell-mediated immune responses in vivo. To examine the effects of m144 on Nh cytotoxicity in vitro, various cell lines were transfected with wild-type m144 or a chimeric construct in which the cytoplasmic domain of m144 was replaced with green fluorescence protein. Burkitt lymphoma line Raji expressed a significant level of m144 as determined by anti-m144 mAb binding or the green fluorescence of the fusion protein. The level of m144 expression was relatively low compared with that of transfected murine class I MHC Dd. However, m144 on Raji cells partially inhibited antibody-dependent cell-mediated cytotoxicity of IL-2-activated NK cells. NK cells from the CMV-susceptible BALB/c as well as those from the resistant C57BL/6 mice were inhibited by m144. Antibodies against the known murine NK inhibitory receptors Ly-49A, C, G, and I did not affect the inhibitory effect of m144. These results suggest that the murine CMV class I MHC homologue m144 partially inhibits MZ cells by interacting with a novel inhibitory receptor. (C) 1999 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer models can be combined with laboratory experiments for the efficient determination of (i) peptides that bind MHC molecules and (ii) T-cell epitopes. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures. This requires the definition of standards and experimental protocols for model application. We describe the requirements for validation and assessment of computer models. The utility of combining accurate predictions with a limited number of laboratory experiments is illustrated by practical examples. These include the identification of T-cell epitopes from IDDM-, melanoma- and malaria-related antigens by combining computational and conventional laboratory assays. The success rate in determining antigenic peptides, each in the context of a specific HLA molecule, ranged from 27 to 71%, while the natural prevalence of MHC-binding peptides is 0.1-5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12. does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset-depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1(+) T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3(-) NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I-deficient tumors was independent of IL-12, A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor J alpha 281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or alpha-galactosylceramide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viruses that establish a persistent infection with their host have evolved numerous strategies to evade the immune system. Consequently, they are useful tools to dissect the complex cellular processes that comprise the immune response. Rapid progress has been made in recent years in defining the role of cellular MHC class I molecules in regulating the response of natural killer (NK) cells. Concomitantly, the roles of the MHC class I homologues encoded by human and mouse cytomegaloviruses in evading or subverting NK cell responses has received considerable interest. This review discusses the results from a number of studies that have pursued the biological function of the viral MHC class I homologues. Based on the evidence from these studies, hypotheses for the possible role of these intriguing molecules are presented. (C) 2000 Editions scientifiques et medicales Elsevier SAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transl-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the mechanisms that control MHC class II (MHC II) expression in immature and activated dendritic cells (DC) grown from spleen and bone marrow precursors. Degradation of the MHC II chaperone invariant chain (li), acquisition of peptide cargo by MHC II, and delivery of MHC II-peptide complexes to the cell surface proceeded similarly in both immature and activated DC. However, immature DC reendocytosed and then degraded the MHC II-peptide complexes much faster than the activated DC. MHC II expression in DC is therefore not controlled by the activity of the protease(s) that degrade Ii, but by the rate of endocytosis of peptide-loaded MHC II. Late after activation, DC downregulated MHC II synthesis both in vitro and in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioassay-directed fractionation of the EtOH extract of an Oceanapia sp. collected off the northern Rottnest Shelf, Australia, has yielded three novel dithiocyanates, thiocyanatins A (1), B (2a), and C (2b). The structures were determined by detailed spectroscopic analysis and confirmed by total synthesis. In addition to featuring an unprecedented dithiocyanate functionality, thiocyanatins possess an unusual 1,16-difunctionalized n-hexadecane carbon skeleton and are revealed as a hitherto unknown class of nematocidal agents

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactions of the model acylium ion (CH3)(2)N-C+=O with acyclic, exocyclic, and Spiro acetals of the general formula (RO)-O-1-(CRR4)-R-3-OR2-upole mass spectrometry. Characteristic intrinsic reactivities were observed for each of these classes of acetals. The two most Characteristic intrinsic reactivities were observed for each of these classes of acetals. The two most common reactions observed were hydride and alkoxy anion [(RO-)-O-1 and (RO-)-O-2] abstraction. Other specific reactions were also observed: (a) a secondary polar [4(+) + 2] cycloaddition for acetals bearing alpha,beta-unsaturated R-3 or R-4 substituents and (b) OH- abstraction for exocyclic and spiro acetals. These structurally diagnostic reactions, in conjunction with others observed previously for cyclic acetals, are shown to reveal the class of the acetal molecule and its ring type and substituents and to permit their recognition and distinction from other classes of isomeric molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we determine bounds for the optimal loss of regularity in the Sobolev scale for a class of weakly hyperbolic operators. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TNF-alpha neutralising agents such as Infliximab (Remicade(R)), Etanercept (Enbrel(R)) and the IL-1 receptor antagonist Anakinra (Kineret(R)), are currently used clinically for the treatment of many inflammatory diseases such as Crohn's disease, rheumatoid arthritis, ankylosing spondylitis, juvenile rheumatoid arthritis, psoriatic arthritis and psoriasis. These protein preparations are expensive to manufacture and administer, need to be injected and can cause allergic reactions. An alternative approach to lowering the levels of TNF-alpha and IL-1 beta in inflammatory disease, is to inhibit the enzymes that generate these cytokines using cheaper small molecules. This paper is a broad overview of the progress that has been achieved so far, with respect to small molecule inhibitor design and pharmacological studies (in animals and humans), for the metalloprotease Tumour Necrosis Factor-alpha Converting Enzyme (TACE) and the cysteine protease Caspase-1 (Interieukin-1 beta Converting Enzyme, ICE). Inhibitors of these two enzymes are currently considered to be good therapeutic targets that have the potential to provide relatively inexpensive and orally bioavailable anti-inflammatory agents in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DC) are the potent antigen presenting cells which modulate T cell responses to self or non-self antigens. DC play a significant role in the pathogenesis of autoimmune diseases, inflammation and infection, but also in the maintenance of tolerance. NF-kappaB, particularly RelB is a crucial pathway for myeloid DC differentiation and functional maturation. While the current paradigm is that mature, nuclear RelB+ DC prime T cells for immunity/autoimmunity and immature DC for tolerance, RelB-deficient mice paradoxically develop generalised systemic autoimmune inflammatory disease with myelopoiesis and splenomegaly. Previous studies suggested abnormal DC differentiation in healthy relatives of type 1 diabetes (t1dm) patients. Therefore, we compared NF- kB activation in monocyte-derived DC from t1dm and non-t1dm controls in response to LPS. While resting DC appeared normal, DC from 6 out of 7 t1dm patients but no t2dm or rheumatoid arthritis patients failed to translocate NF- kB subunits to the nucleus in response to LPS, along with a failure to up-regulate expression of cell surface CD40 and MHC class I. NF- kB subunit mRNA increased normally in t1dm DC after LPS. Both the classical or non-canonical NF- kB pathways were affected as both TNF-a and CD40 stimulation led to a similarly abnormal NF- kB response. In contrast, expression of phosphorylated p38 MAPK and pro-inflammatory cytokine production was intact. These abnormalities in NF- kB activation appear to be generally and specifically applicable at a post-translational level in t1dm, and have the capacity to profoundly influence immunoregulation in affected individuals.