971 resultados para Chromosome 1p
Resumo:
Aegilops biuncialis y Aegilops geniculata son dos especies silvestres alotetraploides, con genomios UM, que constituyen un importante reservorio de genes de interés para la mejora del trigo. En este estudio se ha analizado la distribución cromosómica de diferentes secuencias de tipo microsatélites (?single sequence repeat?, SSR) y su relación con las translocaciones intergenómicas U/M, frecuentes en accesiones de ambas especies. En la mayoría de los cromosomas U y en algunos M, se ha localizado una única señal pericéntromérica de la secuencia (ACG)n, mientras que la secuencia (GAA)n aparece como grandes ?clusters? de localización pericentromérica y, en ocasiones, intersticial. En las 5 accesiones portadoras de translocaciones U/M analizadas, se ha comprobado una asociación estadísticamente significativa entre el punto de rotura-reunión de la reordenación y regiones cromosómicas ricas en secuencias SSR.
Resumo:
Advanced wheat lines carrying the Hessian fly resistance gene H27 were obtained by backcrossing the wheat/Aegilops ventricosa introgression line, H-93-33, to commercial wheat cultivars as recurrent parents. The Acph-N v 1 marker linked to the gene H27 on the 4Nv chromosome of this line was used for marker assisted selection. Advanced lines were evaluated for Hessian fly resistance in field and growth chamber tests, and for other agronomic traits during several crop seasons at different localities of Spain. The hessian fly resistance levels of lines carrying the 4Nv chromosome introgression (4D/4Nv substitution and recombination lines that previously were classified by in situ hybridisation) were high, but always lower than that of their Ae. ventricosa progenitor. Introgression lines had higher grain yields in infested field trials than those without the 4Nv chromosome and their susceptible parents, but lower grain yields under high yield potential conditions. The 4Nv introgression was also associated with later heading, and lower tiller and grain numbers/m2 . In addition, it was associated with longer and more lax spikes, and higher values of grain weight and grain protein content. However, the glutenin and gliadin expression, as well as the bread-making performance, were similar to those of their recurrent parents
Resumo:
Despite mounting genetic evidence implicating a recent origin of modern humans, the elucidation of early migratory gene-flow episodes remains incomplete. Geographic distribution of haplotypes may show traces of ancestral migrations. However, such evolutionary signatures can be erased easily by recombination and mutational perturbations. A 565-bp chromosome 21 region near the MX1 gene, which contains nine sites frequently polymorphic in human populations, has been found. It is unaffected by recombination and recurrent mutation and thus reflects only migratory history, genetic drift, and possibly selection. Geographic distribution of contemporary haplotypes implies distinctive prehistoric human migrations: one to Oceania, one to Asia and subsequently to America, and a third one predominantly to Europe. The findings with chromosome 21 are confirmed by independent evidence from a Y chromosome phylogeny. Loci of this type will help to decipher the evolutionary history of modern humans.
Resumo:
Imprinted genes tend to occur in clusters. We have identified a cluster in distal mouse chromosome (Chr) 2, known from early genetic studies to contain both maternally and paternally imprinted, but unspecified, genes. Subsequently, one was identified as Gnas, which encodes a G protein α subunit, and there is clinical and biochemical evidence that the human homologue GNAS1, mutated in patients with Albright hereditary osteodystrophy, is also imprinted. We have used representational difference analysis, based on parent-of-origin methylation differences, to isolate candidate imprinted genes in distal Chr 2 and found two oppositely imprinted genes, Gnasxl and Nesp. Gnasxl determines a variant G protein α subunit associated with the trans-Golgi network and Nesp encodes a secreted protein of neuroendocrine tissues. Gnasxl is maternally methylated in genomic DNA and encodes a paternal-specific transcript, whereas Nesp is paternally methylated with maternal-specific expression. Their reciprocal imprinting may offer insight into the distal Chr 2 imprinting phenotypes. Remarkably, Gnasxl, Nesp, and Gnas are all part of the same transcription unit; transcripts for Gnasxl and Nesp are alternatively spliced onto exon 2 of Gnas. This demonstrates an imprinting mechanism in which two oppositely imprinted genes share the same downstream exons.
Resumo:
Alterations of human chromosome 8p occur frequently in many tumors. We identified a 1.5-Mb common region of allelic loss on 8p22 by allelotype analysis. cDNA selection allowed isolation of several genes, including FEZ1. The predicted Fez1 protein contained a leucine-zipper region with similarity to the DNA-binding domain of the cAMP-responsive activating-transcription factor 5. RNA blot analysis revealed that FEZ1 gene expression was undetectable in more than 60% of epithelial tumors. Mutations were found in primary esophageal cancers and in a prostate cancer cell line. Transcript analysis from several FEZ1-expressing tumors revealed truncated mRNAs, including a frameshift. Alteration and inactivation of the FEZ1 gene may play a role in various human tumors.
Resumo:
Association between Y chromosome haplotype variation and alcohol dependence and related personality traits was investigated in a large sample of psychiatrically diagnosed Finnish males. Haplotypes were constructed for 359 individuals using alleles at eight loci (seven microsatellite loci and a nucleotide substitution in the DYZ3 alphoid satellite locus). A cladogram linking the 102 observed haplotype configurations was constructed by using parsimony with a single-step mutation model. Then, a series of contingency tables nested according to the cladogram hierarchy were used to test for association between Y haplotype and alcohol dependence. Finally, using only alcohol-dependent subjects, we tested for association between Y haplotype and personality variables postulated to define subtypes of alcoholism—antisocial personality disorder, novelty seeking, harm avoidance, and reward dependence. Significant association with alcohol dependence was observed at three Y haplotype clades, with significance levels of P = 0.002, P = 0.020, and P = 0.010. Within alcohol-dependent subjects, no relationship was revealed between Y haplotype and antisocial personality disorder, novelty seeking, harm avoidance, or reward dependence. These results demonstrate, by using a fully objective association design, that differences among Y chromosomes contribute to variation in vulnerability to alcohol dependence. However, they do not demonstrate an association between Y haplotype and the personality variables thought to underlie the subtypes of alcoholism.
Resumo:
In Bacillus subtilis, parE and parC were shown to be essential genes for the segregation of replicated chromosomes. Disruption of either one of these genes resulted in failure of the nucleoid to segregate. Purified ParE and ParC proteins reconstituted to form topoisomerase IV (topo IV), which was highly proficient for ATP-dependent superhelical DNA relaxation and decatenation of interlocked DNA networks. By immunofluorescence microscopy and by directly visualizing fluorescence by using green fluorescence protein fusions, we determined that ParC is localized at the poles of the bacteria in rapidly growing cultures. The bipolar localization of ParC required functional ParE, suggesting that topo IV activity is required for the localization. ParE was found to be distributed uniformly throughout the cell. On the other hand, fluorescence microscopy showed that the GyrA and GyrB subunits of gyrase were associated with the nucleoid. Our results provide a physiologic distinction between DNA gyrase and topo IV. The subcellular localization of topo IV provides physical evidence that it may be part of the bacterial segregation machinery.
Resumo:
H3 phosphorylation has been correlated with mitosis temporally in mammalian cells and spatially in ciliated protozoa. In logarithmically growing Tetrahymena thermophila cells, for example, H3 phosphorylation can be detected in germline micronuclei that divide mitotically but not in somatic macronuclei that divide amitotically. Here, we demonstrate that micronuclear H3 phosphorylation occurs at a single site (Ser-10) in the amino-terminal domain of histone H3, the same site phosphorylated during mitosis in mammalian cells. Using an antibody specific for Ser-10 phosphorylated H3, we show that, in Tetrahymena, this modification is correlated with mitotic and meiotic divisions of micronuclei in a fashion that closely coincides with chromosome condensation. Our data suggest that H3 phosphorylation at Ser-10 is a highly conserved event among eukaryotes and is likely involved in both mitotic and meiotic chromosome condensation.
Resumo:
Protein tyrosine phosphatases (PTPs) have long been thought to play a role in tumor suppression due to their ability to antagonize the growth promoting protein tyrosine kinases. Recently, a candidate tumor suppressor from 10q23, termed P-TEN, was isolated, and sequence homology was demonstrated with members of the PTP family, as well as the cytoskeletal protein tensin. Here we show that recombinant P-TEN dephosphorylated protein and peptide substrates phosphorylated on serine, threonine, and tyrosine residues, indicating that P-TEN is a dual-specificity phosphatase. In addition, P-TEN exhibited a high degree of substrate specificity, showing selectivity for extremely acidic substrates in vitro. Furthermore, we demonstrate that mutations in P-TEN, identified from primary tumors, tumor cells lines, and a patient with Bannayan–Zonana syndrome, resulted in the ablation of phosphatase activity, demonstrating that enzymatic activity of P-TEN is necessary for its ability to function as a tumor suppressor.
Resumo:
This study aimed to exploit bacterial artificial chromosomes (BAC) as large antigen-capacity DNA vaccines (BAC-VAC) against complex pathogens, such as herpes simplex virus 1 (HSV-1). The 152-kbp HSV-1 genome recently has been cloned as an F-plasmid-based BAC in Escherichia coli (fHSV), which can efficiently produce infectious virus progeny upon transfection into mammalian cells. A safe modification of fHSV, fHSVΔpac, does not give rise to progeny virus because the signals necessary to package DNA into virions have been excluded. However, in mammalian cells fHSVΔpac DNA can still replicate, express the HSV-1 genes, cause cytotoxic effects, and produce virus-like particles. Because these functions mimic the lytic cycle of the HSV-1 infection, fHSVΔpac was expected to stimulate the immune system as efficiently as a modified live virus vaccine. To test this hypothesis, mice were immunized with fHSVΔpac DNA applied intradermally by gold-particle bombardment, and the immune responses were compared with those induced by infection with disabled infectious single cycle HSV-1. Immunization with either fHSVΔpac or disabled infectious single cycle HSV-1 induced the priming of HSV-1-specific cytotoxic T cells and the production of virus-specific antibodies and conferred protection against intracerebral injection of wild-type HSV-1 at a dose of 200 LD50. Protection probably was cell-mediated, as transfer of serum from immunized mice did not protect naive animals. We conclude that BAC-VACs per se, or in combination with genetic elements that support replicative amplification of the DNA in the cell nucleus, represent a useful new generation of DNA-based vaccination strategies for many viral and nonviral antigens.
Resumo:
Previous studies have shown that the chloride channel gene Clc4 is X-linked and subject to X inactivation in Mus spretus, but that the same gene is autosomal in laboratory strains of mice. This exception to the conservation of linkage of the X chromosome in one of two interfertile mouse species was exploited to compare expression of Clc4 from the X chromosome to that from the autosome. Clc4 was found to be highly expressed in brain tissues of both mouse species. Quantitative analyses of species-specific expression of Clc4 in brain tissues from mice resulting from M. spretus × laboratory strain crosses, demonstrate that each autosomal locus has half the level of Clc4 expression as compared with the single active X-linked locus. In contrast expression of another chloride channel gene, Clc3, which is autosomal in both mouse species is equal between alleles in F1 animals. There is no evidence of imprinting of the Clc4 autosomal locus. These results are consistent with Ohno’s hypothesis of an evolutionary requirement for a higher expression of genes on the single active X chromosome to maintain balance with autosomal gene expression [Ohno, S. (1967) Sex Chromosomes and Sex-Linked Genes (Springer, Berlin)].
Resumo:
A systematic screen termed the allelic message display (AMD) was developed for the hunting of imprinted genes. In AMD, differential display PCR is adopted to image allelic expression status of multiple polymorphic transcripts in two parental mouse strains, reciprocal F1 hybrids and pooled backcross progenies. From the displayed patterns, paternally and maternally expressed transcripts can be unequivocally identified. The effectiveness of AMD screening was clearly demonstrated by the identification of a paternally expressed gene Impact on mouse chromosome 18, the predicted product of which belongs to the YCR59c/yigZ hypothetical protein family composed of yeast and bacterial proteins with currently unknown function. In contrast with previous screening methods necessitating positional cloning efforts or generation of parthenogenetic embryos, this approach requires nothing particular but appropriately crossed mice and can be readily applied to any tissues at various developmental stages. Hence, AMD would considerably accelerate the identification of imprinted genes playing pivotal roles in mammalian development and the pathogenesis of various diseases.