998 resultados para Chromium(III)
Resumo:
Dense, CO2-rich fluid inclusions hosted by plagioclases, An45 to An54, of the O.-v.-Gruber- Anorthosite body, central Dronning Maud Land, East Antarctica, contain varying amounts of small calcite, paragonite and pyrophyllite crystals detected by Raman microspectroscopy. These crystals are reaction products that have formed during cooling of the host and the original CO2-rich H2O-bearing enclosed fluid. Variable amounts of these reaction products illustrates that the reaction did not take place uniformly in all fluid inclusions, possibly due to differences in kinetics as caused by differences in shape and size, or due to compositional variation in the originally trapped fluid. The reaction albite + 2anorthite + 2H2O + 2CO2 = pyrophyllite + paragonite + 2calcite was thermodynamically modelled with consideration of different original fluid compositions. Although free H2O is not detectable in most fluid inclusions, the occurrence of OH-bearing sheet silicates indicates that the original fluid was not pure CO2, but contained significant amounts of H2O. Compared to an actual fluid inclusion it is obvious, that volume estimations of solid phases can be used as a starting point to reverse the retrograde reaction and recalculate the compositional and volumetrical properties of the original fluid. Isochores for an unmodified inclusion can thus be reconstructed, leading to a more realistic estimation of P-T conditions during earlier metamorphic stages or fluid capturing.
Resumo:
Data presented in the paper suggest significant differences between thermodynamic conditions, under which magmatic complexes were formed in MAR at 29°-34°N and 12°-18°N. Melts occurring at 29°-34°N were derived by melting of a mantle source with homogeneous distribution of volatile components and arrived at the surface without significant fractionation, likely, due to their rapid ascent. The MAR segments between 12° and 18°N combine contrasting geodynamic environments of magmatism, which predetermined development of a large plume region with widespread mixing of melting products of geochemically distinct mantle sources. At the same time, this region is characterized by conditions favorable for origin of localized zones of anomalous plume magmatism. These sporadic magmatic sources were spatially restricted to MAR fragments with the Hess crust, whose compositional and mechanical properties were, perhaps, favorable for focusing and localization of plume magmatism. The plume source between 12° and 18°N beneath MAR may be geochemically heterogeneous.
Resumo:
The monograph summarizes results of petrological and geochemical studies of rocks from the ocean floor collected by the authors during expeditions to the Central Atlantic. Detailed work in the Capa Verde transform fault zone gave a large amount of new information about magmatic and hydrothermal systems of the Mid-Atlantic Ridge.
Resumo:
Refractory spinel peridotites were drilled during Leg 125 from two diapiric serpentinite seamounts: Conical Seamount in the Mariana forearc (Sites 778-780) and Torishima Forearc Seamount (Sites 783-784) in the Izu-Ogasawara forearc. Harzburgite is the predominant rock type in the recovered samples, with subordinate dunite; no lherzolite was found. The harzburgite is diopside-free to sparsely diopside-bearing, with modal percentages of diopside that range from 0% to 2%. Spinels in the harzburgites are chrome-rich (Cr/[Cr + Al] = 0.38-0.83; Fe3+/[Fe3+ + Cr + Al] = 0.01-0.07). Olivine and orthopyroxene are magnesian (Mg# = 0.92). Discrete diopsides reveal extreme depletion of light rare earth elements. Primary hornblende is rare. The bulk major-element chemistry shows low average values of TiO2 (trace), Al2O3 (0.55%) and CaO (0.60%), but high Mg# (0.90). These rocks are more depleted than the abyssal peridotites from the mid-oceanic ridge. They are interpreted as residues of extensive partial melting (= 30%), of which the last episode was in the mantle wedge, probably associated with the generation of incipient island-arc magma, including boninite and/or arc-tholeiite. These depleted peridotites probably represent the residues of melting within mantle diapirs that developed within the mantle wedge.
Resumo:
Thirty-five samples from Hole 778A were prepared for X-ray diffraction (XRD) mineralogical analyses and for chemical analyses of major and trace elements. Most of the selected samples were silt- and sand-sized sedimentary serpentinites or microbreccias except for a soft clast of mafic rock, a hard clast of massive serpentinized peridotite, and a pebble of consolidated, undeformed serpentine microbreccia that contained planktonic foraminifers. Both mineralogical and geochemical analyses allow discrimination of three groups among the analyzed samples. These groups correspond to three stratigraphic intervals present along the drilled section. Group A contains the upper samples (lithologic Unit I). These consist of poorly consolidated serpentine muds carrying hard-rock clasts (serpentinized peridotites, metabasalts). They are characterized by the following mineralogical assemblage: serpentine, Fe-oxides and hydroxides, aragonite, and halite. They exhibit variable SiO2, MgO contents, but are characterized by a SiO2/MgO ratio near 1. CaO content is high in relation to development of aragonite. Al2O3 content is low. Relatively high K2O, Na2O, and Sr contents are present, presumably in relation to interactions with seawater. Group B (30-77 mbsf) contains samples exhibiting very homogeneous chemical and mineralogical compositions. They consist of serpentinite microbreccias exhibiting frequent shear structures. Hard-rock clasts are also present (serpentinized peridotites, metabasalts, one possible chert fragment). The mineralogy of the Group B samples is characterized by the presence of serpentine and authigenic minerals: hydroxycarbonates and hydrogrossular. Calcite and chlorite are also present, but all the samples lack aragonite. Their chemical compositions are remarkably similar to compositions of their parent rocks. Group C contains silt- and sand-sized serpentine and serpentine microbreccias, which are locally rich in red clasts, probably strongly altered (oxidized?) mafic fragments. Intervals having clasts of more diverse origin than those higher in the section were recovered. Clast lithology includes serpentinized peridotites, metabasalts, metavolcaniclastite, meta-olivine gabbro, and amphibolite sandstone. Mineralogy and geochemistry reflect these compositions. Serpentine content of the samples is less than in previous groups. Correlatively, sepiolite, palygorskite, and chlorite-smectite are mineral phases present in the analyzed samples. Accessory igneous minerals (amphiboles, pyroxenes, hematite) also were found. The chemical compositions of most of Group C samples differ from that of massive serpentinized peridotites. The main differences are (1) higher SiO2, CaO, TiO2 and Al2O3 contents, (2) a SiO2/MgO ratio greater than 1, and (3) a negative correlation between Al2O3, and MgO, Cr, and Ni. These characteristics suggest new constraints relative to the flow structure of the flank of Conical Seamount.
Resumo:
Drilling of the distal Newfoundland margin at Ocean Drilling Program Site 1277 recovered part of the transition between exhumed sub-continental mantle lithosphere and normal mid-ocean-ridge basalt (N-MORB) volcanism perhaps related to the initiation of seafloor spreading, which may have occurred near the Aptian/Albian boundary, coincident with the final separation of subcontinental mantle lithosphere. Subcontinental mantle lithosphere was recovered near the crest of a basement high, the Mauzy Ridge. This ridge lies near magnetic Anomaly M1 and is inferred to be of Barremian age. The recovered section is dominated by serpentinized spinel harzburgite, with subordinate dunite and minor gabbroic intrusives, and it includes inferred high-temperature ductile shear zones. The serpentinite is capped by foliated gabbro cataclasite that is interpreted as the product of a major seafloor extensional detachment. The serpentinized harzburgite beneath is highly depleted subcontinental mantle lithosphere that was exhumed to create new seafloor within the ocean-continent transition zone. After inferred removal of overlying brittle crust, the detachment was eroded, producing multiple mass flows that were dominated by clasts of serpentinite and gabbro in a lithoclastic and calcareous matrix. Basaltic lavas were erupted spasmodically, mainly as sheet flows, with subordinate lava breccia, hyaloclastite, and possible pillow lava. The sedimentary-volcanic succession and the exhumed mantle lithosphere experienced later high-angle extensional fracturing and probably faulting. Extensional fissures opened incrementally and were filled with silt-sized carbonate, basalt-derived clastic sediment, and hyaloclastite, forming neptunian dykes and geopetal structures. Chemical analysis of representative basalts for major elements and trace elements were made using a high-precision, high-accuracy X-ray fluorescence method (utilizing increased count times) and by whole-rock inductively coupled plasma-mass spectrometry that yielded additional evidence for rare earth elements. The analyses indicate N-MORB to slightly enriched compositions. The MORB was produced by relatively high degree melting of a fertile mantle source that differed strongly from the cored serpentinized peridotites. The basalts exhibit a distinct negative Nb anomaly on MORB-normalized plots that can be explained by prior extraction of melt from upper mantle that had previously been affected by subduction, possibly during closure of the Iapetus or Rheic oceans. In the proposed interpretation, mantle lithosphere was exhumed to the seafloor and experienced mass wasting to form serpentinite-rich mass flows. The interbedded MORB records the beginning of a transition to "normal" seafloor spreading. This interpretation takes into account drilling results from the Iberia-Galicia margin and the Jurassic Alps-Apennines.
Resumo:
Small-scale shear zones are present in drillcore samples of abyssal peridotites from the Mid-Atlantic ridge at 15°20'N (Ocean Drilling Program Leg 209). The shear zones act as pathways for both evolved melts and hydrothermal fluids. We examined serpentinites directly adjacent to such zones to evaluate chemical changes resulting from melt-rock and fluid-rock interaction and their influence on the mineralogy. Compared to fresh harzburgite and melt-unaffected serpentinites, serpentinites adjacent to melt-bearing veins show a marked enrichment in rare earth elements (REE), strontium and high field strength elements (HFSE) zirconium and niobium. From comparison with published chemical data of variably serpentinized and melt-unaffected harzburgites, one possible interpretation is that interaction with the adjacent melt veins caused the enrichment in HFSE, whereas the REE contents might also be enriched due to hydrothermal processes. Enrichment in alumina during serpentinization is corroborated by reaction path models for interaction of seawater with harzburgite-plagiogranite mixtures. These models explain both increased amounts of alumina in the serpentinizing fluid for increasing amounts of plagiogranitic material mixed with harzburgite, and the absence of brucite from the secondary mineralogy due to elevated silica activity. By destabilizing brucite, nearby melt veins might fundamentally influence the low-temperature alteration behaviour of serpentinites. Although observations and model results are in general agreement, due to absence of any unaltered protolith a quantification of element transport during serpentinization is not straightforward.