870 resultados para Ceramic contexts
Resumo:
In this work, in situ alpha-SiAlON-SiC ceramic composites were obtained,by, liquid phase sintering, using SiC as reinforcement. Different beta-SiC powder contents (0-20 wt.%), were added to Si3N4-AlN-RE2O3. powder mixtures, and compacted by cold isostatic pressing. The samples were sintered at 1950 degrees C for 1 h, in N-2 atmosphere. Sintered: samples were characterized by relative density, weight loss, X-ray diffraction and scanning electron microscopy. Furthermore, mechanical properties such as hardness and fracture toughness were determined by Vickers indentation method. Lattice parameters of the alpha' phase did not considerably change with increase of SiC content. However, morphology, average grain size and aspect ratio of the alpha' phase were considerably changed with increase of the SiC content. These behavior influences significantly the mechanical properties of this hard ceramic composite. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Eu3+ and Tm3+ doped lanthanum fluoride and lanthanum oxyfluoride are obtained from Eu3+, Tm3+ containing lanthanum fluoracetate solutions. The nature of the crystal phase obtained could be controlled by the temperature of heat treatment. Spectral characteristics of Eu3+ doped crystal phases were sufficiently different to allow utilization of Eu3+ as structural probes. Tm3+ emission at the technologically important spectral region of 1450nm could be observed for the fluoride and oxyfluoride crystal phases. The large bandwidth obtained (around 120nm) suggests potential applications in optical amplification. SiO2-LaF3-LaOF composite materials were also prepared. It is observed that for heat treatments above 800degreesC, fluorine loss, probably in the form of SiF4 hinder the observation of Tm3+ emission. Eu3+ spectroscopic characteristics clearly show the evolution of a fluoride like environment to an amorphous oxide one as the temperature of heat treatment increased. Thin films obtained by dip-coating on V-SiO2 substrates and treated at 300degreesC, 500degreesC and 800degreesC display guided modes in the visible and infrared regions. Optical characteristics (refractive index and films thickness) were obtained at 543.5, 632.8 and 1550nm. Attenuation as low as 1.8dB/cm was measured at 632.8nm. (C) 2004 Published by Elsevier B.V.
Resumo:
The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.
Resumo:
Cooperative energy transfer upconversion luminescence is investigated in Tb(3+)/Yb(3+)-codoped PbGeO(3)-PbF(2)-CdF(2) glass-ceramic and its precursor glass under resonant and off resonance infrared excitation. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm are identified as due to the (5)D(3)((5)G(6))->(7)F(1) (J=6,5,4) and (5)D(4)->(7)F(1) (J=6,5,4,3) transitions, respectively, and readily observed. The results indicate that cooperative energy transfer between ytterbium and terbium. ions followed by excited state absorption are the dominant upconversion excitation mechanisms involved. Comparison of the upconversion process in a glass-ceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.
Resumo:
Energy transfer excited multiwavelength visible upconversion emission and white light generation is described in a single sample of PbGeO(3)-PbF(2)-CdF(2) glass-ceramic triply doped With Ho/Tm/Yb under single infrared laser excitation. Blue (475 nm), green (540 mn), and red (650 nm), upconversion luminescence signals are generated, and the emissions are assigned, respectively, to thulium ((1)G(4)-(3)H(6)), and holmium ((5)S(2);(5)F(4)) -> (5)I(8), (5)F(5) -> (5)I(8)) ions transitions, both excited via successive energy transfers from ytterbium ions. It is experimentally shown that with a proper combination of the rare earth ions contents, white light may be produced, with the simultaneous generation of fluorescence with controllable intensities at the wavelengths of the three primary colours in a single sample and using a single near-infrared excitation source.
Resumo:
Energy-transfer excited upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+ -codoped PbGeO3-PbF2-CdF2 glass and glass-ceramic under infrared excitation is investigated. In Ho3+/Yb3+-codoped samples, green (545 nm), red (652 nm), and near-infrared (754 nm) upconversion emission corresponding to the S-5(2) (F-5(4)) -> I-5(8), F-5(5) -> I-5(8), and S-5(2)(F-5(4)) -> I-5(7) transitions, respectively, was observed. Blue (490 nm) emission assigned to the F-5(2,3) -> I-5(8) transition was also detected. In the Tb3+/Yb3+-codoped system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the D-5(3)((5)G(6)) -> F-7(J)(J = 6, 5, 4) and D-5(4) -> F-7(J)(J = 6, 5, 4, 3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicated that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dental ceramics are presented within a simplifying framework allowing for facile understanding of their development, composition and indications. Engineering assessments of clinical function are dealt with and literature is reviewed on the clinical behaviour of all-ceramic systems. Practical aspects are presented regarding the choice and use of dental ceramics to maximize aesthetics and durability, emphasizing what we know and how we know it.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: This study evaluated the adhesive quality of simplified self-adhesive and conventional resin cements to Y-TZP in dry and aged conditions. Methods: Y-TZP ceramic blocks (N=192) (5 x 5 x 2 mm) were embedded in acrylic resin and randomly divided into two groups, based on surface conditioning: 96% isopropanol or chairside tribochemical silica coating and silanization. Conditioned ceramics were divided into four groups to receive the resin cements (Panavia F 2.0, Variolink II, RelyX U100 and Maxcem). After 24 hours, half of the specimens (n=12) from each group were submitted to shear bond strength testing (0.5 nun/minute). The remaining specimens were tested after 90 days of water storage at 37 degrees C and thermocycling (12,000x, 5 degrees C-55 degrees C). Failure types were then assessed. The data were analyzed using three-way ANOVA and the Tukey's test (alpha=0.05). Results: Significant effects of ceramic conditioning, cement type and storage conditions were observed (p<0.0001). The groups cleaned using alcohol only showed low bond strength values in dry conditions and the bond strength was reduced dramatically after aging. Groups conditioned using silica coating and silanization showed higher bond strengths both in dry and aged conditions. A high number of specimens failed prematurely prior to testing when they were cleaned using 96% isopropanol. Conclusion: Overall, silica coating and silanization showed higher, stable bond strengths with and without aging. The durability of resin-ceramic adhesion varied, depending on the adhesive cement type.