991 resultados para Cellular transport


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper estimates a model of airline competition for the Spanish air transport market. I test the explanatory power of alternative oligopoly models with capacity constraints. In addition, I analyse the degree of density economies. Results show that Spanish airlines conduct follows a price-leadership scheme so that it is less competitive than the Cournot solution. I also find evidence that thin routes can be considered as natural monopolies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Maatalous, fosfori ja veden laatu: alkuperä, kulkeutuminen ja vesistökuormituksen hallinta

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large percentage of healthy individuals (50-90%) is chronically infected with Cytomegalovirus (CMV). Over the past few years, several techniques were developed in order to monitor CMV-specific T-cell responses. In addition to the identification of antigen-specific T cells with peptide-loaded MHC complexes, most of the current strategies to identify CMV-specific T cells are centered on the assessment of the functions of memory T cells including their ability to mediate effector function, to proliferate or to secrete cytokines following antigen-specific stimulation. The investigation of these functions has allowed the characterization of the CMV-specific T-cell responses that are present during different phases of the infection. Furthermore, it has also been shown that the combination of virus-specific CD4 and CD8 T-cell responses are critical components of the immune response in the control of virus replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study the distribution and cellular localization of GLUT2 in the rat brain by light and electron microscopic immunohistochemistry, whereas our ultrastructural observations will be reported in a second paper. Confirming previous results, we show that GLUT2-immunoreactive profiles are present throughout the brain, especially in the limbic areas and related nuclei, whereas they appear most concentrated in the ventral and medial regions close to the midline. Using cresyl violet counterstaining and double immunohistochemical staining for glial or neuronal markers (GFAp, CAII and NeuN), we show that two limited populations of oligodendrocytes and astrocytes cell bodies and processes are immunoreactive for GLUT2, whereas a cross-reaction with GLUT1 cannot be ruled out. In addition, we report that the nerve cell bodies clearly immunostained for GLUT2 were scarce (although numerous in the dentate gyrus granular layer in particular), whereas the periphery of numerous nerve cells appeared labeled for this transporter. The latter were clustered in the dorsal endopiriform nucleus and neighboring temporal and perirhinal cortex, in the dorsal amygdaloid region, and in the paraventricular and reuniens thalamic nuclei, whereas they were only a few in the hypothalamus. Moreover, a group of GLUT2-immunoreactive nerve cell bodies was localized in the dorsal medulla oblongata while some large multipolar nerve cell bodies peripherally labeled for GLUT2 were scattered in the caudal ventral reticular formation. This anatomical localization of GLUT2 appears characteristic and different from that reported for the neuronal transporter GLUT3 and GLUT4. Indeed, the possibility that GLUT2 may be localized in the sub-plasmalemnal region of neurones and/or in afferent nerve fibres remains to be confirmed by ultrastructural observations. Because of the neuronal localization of GLUT2, and of its distribution relatively similar to glucokinase, it may be hypothesized that this transporter is, at least partially, involved in cerebral glucose sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The outcome of a viral infection depends on the interplay between the host's capacity to trigger potent antiviral responses and viral mechanisms that counteract them. Although Toll-like receptor (TLR)-3, which recognizes virally derived double-stranded (ds) RNA, transmits downstream antiviral signaling through the TIR adaptor Trif (TICAM-1), viral RNA-sensing RIG-like helicases (RLHs) use the mitochondrial-bound CARD protein Cardif (IPS-1/MAVS/VISA). The importance of these two antiviral signaling pathways is reflected by the fact that both adaptors are inhibited through specific cleavage triggered by the hepatitis C virus serine protease NS3-4A. Here, we show that inactivation can also occur through cellular caspases activated by various pro-apoptotic signals. Upon caspase-dependent cleavage both adaptors loose their capacity to activate the transcription factors interferon regulatory factors (IRF) and NF-kappaB. Importantly, poliovirus infection triggers a caspase-dependent cleavage of Cardif, suggesting that some viruses may activate caspases not only as a mean to facilitate shedding and replication, but also to impair antiviral responses

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TC-PTP). The aim of this study was to identify novel cellular substrates of the NS3-4A protease and to investigate their role in the life cycle and pathogenesis of HCV. Methods: Cell lines inducibly expressing the NS3-4A protease were analyzed in basal as well as interferon- α -stimulated states by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling strin- gent criteria for potential substrates or products of the NS3-4A protease were further investigated in different experimental sys- tems as well as in liver biopsies from patients with chronic hep- atitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 21 can- didates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a novel cellular substrate of the HCV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a proviral factor involved in viral particle production but not in HCV entry or RNA replica- tion. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of cleavage for GPx8 function are underway. The identification of novel cellular substrates of the HCV NS3-4A protease should yield new insights into the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel angles for therapeutic inter- vention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical transport theory is employed to analyze the hot quark-gluon plasma at the leading order in the coupling constant. A condition on the (covariantly conserved) color current is obtained. From this condition, the generating functional of hard thermal loops with an arbitrary number of soft external bosonic legs can be derived. Our approach, besides being more direct than alternative ones, shows that hard thermal loops are essentially classical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gully erosion occurs by the combined action of splash, sheetwash and rill-wash (interrill and rill erosion). These erosion processes have a great capacity for both sediment production and sediment transport. The objectives of this experiment were to evaluate hydrological and sediment transport in a degraded area, severely dissected by gullies; to assess the hydraulic flow characteristics and their aggregate transport capacity; and to measure the initial splash erosion rate. In the study area in Guarapuava, State of Paraná, Brazil (lat 25º 24' S; long 51º24' W; 1034 m asl), the soil was classified as Cambissolo Húmico alumínico, with the following particle-size composition: sand 0.116 kg kg-1; silt 0.180 kg kg-1; and clay 0.704 kg kg-1. The approach of this research was based on microcatchments formed in the ground, to study the hydrological response and sediment transport. A total of eight rill systems were simulated with dry and wet soil. An average rainfall of 33.7 ± 4.0 mm was produced for 35 to 54 min by a rainfall simulator. The equipment was installed, and a trough was placed at the end of the rill to collect sediments and water. During the simulation, the following variables were measured: time to runoff, time to ponding, time of recession, flow velocity, depth, ratio of the initial splash and grain size. The rainsplash of dry topsoil was more than twice as high as under moist conditions (5 g m-2 min-1 and 2 g m-2 min-1, respectively). The characteristics of the flow hydraulics indicate transition from laminar to turbulent flow [Re (Reynolds number) 1000-2000]. In addition, it was observed that a flow velocity of 0.12 m s-1 was the threshold for turbulent flow (Re > 2000), especially at the end of the rainfall simulation. The rill flow tended to be subcritical [Fr (Froude Number) < 1.0]. The variation in hydrological attributes (infiltration and runoff) was lower, while the sediment yield was variable. The erosion in the rill systems was characterized as limited transport, although the degraded area generated an average of 394 g m-2 of sediment in each simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.