986 resultados para Carriera, Rosalba, 1675-1757.
Resumo:
The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg gÿ1 soil)apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVIenhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation–reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.
Resumo:
Rh-I-terpyridine complexes have been unambiguously formed for the first time. The 2,21:6',2"-terpyridine (tpy), 4'-chloro-2,2':6',2"-terpyridine (4'-Cl-tpy) and 4'-(tert-butyldimethylsilyl-ortho-carboranyl)-2,2':6',2"-terpyridine (carboranyl-tpy) ligands were used for successful syntheses and characterisation of the corresponding Rh-I complexes with halide coligands, [Rh(X)(4'-Y-terpyridine)] (X = Cl, Y = H, Cl, carboranyl; X = Br, Y = H). All four neutral Rh-tpy complexes are square planar, with Rh-X bonds in the plane of the 4'-Y-terpyridine ligands. Full characterisation of these dark blue, highly air-sensitive compounds was hampered by their poor solubility in various organic solvents. This is mainly due to the formation of pi-stacked aggregates, as evidenced by the crystal structure of [Rh(Cl)(tpy)]; in addition, [Rh(Cl)(carboranyl-tpy)] merely forms discrete dimers. The (bonding) properties of the novel Rh-I-terpyridine complexes have been studied with single-crystal X-ray diffraction, (time-dependent) density functional theoretical (DFT) calculations, far-infrared spectroscopy, electronic absorption spectroscopy and cyclic voltammetry. From DFT calculations, the HOMO of the studied Rh-I-terpyridine complexes involves predominantly the metal centre, while the LUMO resides on the terpyridine ligand. Absorption bands of the studied complexes in the visible region (400-900 nm) can be assigned to MLCT and MLCT/XLCT transitions. The relatively low oxidation potentials of [Rh(X)(tpy)] (X = Cl, Br) point to a high electron density on the metal centre. This makes the Rh-I-terpyridine complexes strongly nucleophilic and (potentially) highly reactive towards various (small) substrate molecules containing carbon-halide bonds.
Resumo:
A technique is derived for solving a non-linear optimal control problem by iterating on a sequence of simplified problems in linear quadratic form. The technique is designed to achieve the correct solution of the original non-linear optimal control problem in spite of these simplifications. A mixed approach with a discrete performance index and continuous state variable system description is used as the basis of the design, and it is shown how the global problem can be decomposed into local sub-system problems and a co-ordinator within a hierarchical framework. An analysis of the optimality and convergence properties of the algorithm is presented and the effectiveness of the technique is demonstrated using a simulation example with a non-separable performance index.
Resumo:
World oilseed trade consists of many closely substitutable commodities, with canola and cottonseed as possible alternatives to soya beans for many purposes. Transgenic events in all three crops have been widely adopted, particularly in North and South America, for compelling economic or agronomic reasons. Despite the close attention from organizations concerned about the potential consequences of transgenic crop adoption, there appears to be no substantiated evidence of transgenic DNA in meat or milk products when such crops are fed to livestock. The global area of these transgenic crops continues to increase. No transgenic canola, cotton or soya bean crops are permitted for commercial cultivation in Europe, and although transgenic feed resources are permitted for import, importers risk shipments being denied entry if the traces of an unauthorized transgenic crop are detected. These tight controls can mean that livestock farmers in the EU are disadvantaged due to restricted access to cheaper feed or higher feed costs, and they are thus loosing a degree of competitive advantage. This paper reviews the extent to which transgenic soya beans have become the ‘conventional’ method of cultivation elsewhere, and notes implications this has for livestock nutrition, traceability and economics within the EU. The paper concludes with discussion regarding the implications for the EU of delayed acceptance of newly available transgenic traits.
Resumo:
Cyclamen is a diverse genus with some well defined and some intransigent species complexes. Here we report on an attempt to use DNA barcoding techniques to help evaluate species boundaries. DNA barcoding uses multiple samples, each from a different individual of a species, to generate a series of DNA sequences that can be compared for similarity.
Resumo:
Patterns of substitution in chloroplast encoded trnL_F regions were compared between species of Actaea (Ranunculales), Digitalis (Scrophulariales), Drosera (Caryophyllales), Panicoideae (Poales), the small chromosome species clade of Pelargonium (Geraniales), each representing a different order of flowering plants, and Huperzia (Lycopodiales). In total, the study included 265 taxa, each with > 900-bp sequences, totaling 0.24 Mb. Both pairwise and phylogeny-based comparisons were used to assess nucleotide substitution patterns. In all six groups, we found that transition/transversion ratios, as estimated by maximum likelihood on most-parsimonious trees, ranged between 0.8 and 1.0 for ingroups. These values occurred both at low sequence divergences, where substitutional saturation, i.e., multiple substitutions having occurred at the same (homologous) nucleotide position, was not expected, and at higher levels of divergence. This suggests that the angiosperm trnL-F regions evolve in a pattern different from that generally observed for nuclear and animal mtDNA (transitional/transversion ratio > or = 2). Transition/transversion ratios in the intron and the spacer region differed in all alignments compared, yet base compositions between the regions were highly similar in all six groups. A>-
Resumo:
Under the Public Bodies Bill 2010, the HFEA, cornerstone in the regulation of assisted reproduction technologies (ART) for the last twenty years, is due to be abolished. This implies that there is no longer a need for a dedicated regulator for ART and that the existing roles of the Authority as both operational compliance monitor, and instance of ethical evaluation, may be absorbed by existing healthcare regulators. This article presents a timely analysis of these disparate functions of the HFEA, charting reforms adopted in 2008 and assessing the impact of the current proposals. Taking assisted conception treatment as the focus activity, it will be shown that the last few years have seen a concentration on the HFEA as a technical regulator based upon the principles of Better Regulation, with little analysis of how the ethical responsibility of the Authority fits into this framework. The current proposal to abolish the HFEA continues to fail to address this crucial question. Notwithstanding the fact that the scope of the Authority's ethical role may be questioned, its abolition requires that the Government consider what alternatives exists - or need to be put in place - to provide both responsive operational regulation and a forum for ethical reflection and decision-making in an area which continues to pose regulatory challenges
Resumo:
We review the scientific literature since the 1960s to examine the evolution of modeling tools and observations that have advanced understanding of global stratospheric temperature changes. Observations show overall cooling of the stratosphere during the period for which they are available (since the late 1950s and late 1970s from radiosondes and satellites, respectively), interrupted by episodes of warming associated with volcanic eruptions, and superimposed on variations associated with the solar cycle. There has been little global mean temperature change since about 1995. The temporal and vertical structure of these variations are reasonably well explained bymodels that include changes in greenhouse gases, ozone, volcanic aerosols, and solar output, although there are significant uncertainties in the temperature observations and regarding the nature and influence of past changes in stratospheric water vapor. As a companion to a recent WIREs review of tropospheric temperature trends, this article identifies areas of commonality and contrast between the tropospheric and stratospheric trend literature. For example, the increased attention over time to radiosonde and satellite data quality has contributed to better characterization of uncertainty in observed trends both in the troposphere and in the lower stratosphere, and has highlighted the relative deficiency of attention to observations in the middle and upper stratosphere. In contrast to the relatively unchanging expectations of surface and tropospheric warming primarily induced by greenhouse gas increases, stratospheric temperature change expectations have arisen from experiments with a wider variety of model types, showingmore complex trend patterns associated with a greater diversity of forcing agents.
Resumo:
The Intergovernmental Panel on Climate Change fourth assessment report, published in 2007 came to a more confident assessment of the causes of global temperature change than previous reports and concluded that ‘it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica.’ Since then, warming over Antarctica has also been attributed to human influence, and further evidence has accumulated attributing a much wider range of climate changes to human activities. Such changes are broadly consistent with theoretical understanding, and climate model simulations, of how the planet is expected to respond. This paper reviews this evidence from a regional perspective to reflect a growing interest in understanding the regional effects of climate change, which can differ markedly across the globe. We set out the methodological basis for detection and attribution and discuss the spatial scales on which it is possible to make robust attribution statements. We review the evidence showing significant human-induced changes in regional temperatures, and for the effects of external forcings on changes in the hydrological cycle, the cryosphere, circulation changes, oceanic changes, and changes in extremes. We then discuss future challenges for the science of attribution. To better assess the pace of change, and to understand more about the regional changes to which societies need to adapt, we will need to refine our understanding of the effects of external forcing and internal variability
Resumo:
Carbon offsetting can be loosely characterized as a mechanism by which an organization or individual contributes to a scheme that is projected either to remove carbon dioxide from the atmosphere or to deliver carbon dioxide emission reductions on the part of other organizations or individuals. An activity that has been offset therefore purports to make no long-term net contribution to atmospheric greenhouse gas concentrations. The ethical basis for using carbon offsetting as an approach to tackling climate change is very much contested. We seek to expose some of the underlying reasons for these ethical disagreements. We show that they relate both to empirical disagreements about what the likely benefits of offsetting are and, more fundamentally, to principled disagreements about the right way to discharge duties to deliver carbon reductions.
Resumo:
The North Atlantic oscillation (NAO) is under current climate conditions the leading mode of atmospheric circulation variability over the North Atlantic region. While the pattern is present during the entire year, it is most important during winter, explaining a large part of the variability of the large-scale pressure field, being thus largely determinant for the weather conditions over the North Atlantic basin and over Western Europe. In this study, a review of recent literature on the basic understanding of the NAO, its variability on different time scales and driving physical mechanisms is presented. In particular, the observed NAO variations and long-term trends are put into a long term perspective by considering paleo-proxy evidence. A representative number of recently released NAO reconstructions are discussed. While the reconstructions agree reasonably well with observations during the instrumental overlapping period, there is a rather high uncertainty between the different reconstructions for the pre-instrumental period, which leads to partially incoherent results, that is, periods where the NAO reconstructions do not agree even in sign. Finally, we highlight the future need of a broader definition of the NAO, the assessment of the stability of the teleconnection centers over time, the analysis of the relations to other relevant variables like temperature and precipitation, as well as on the relevant processes involved
Resumo:
Climate model ensembles are widely heralded for their potential to quantify uncertainties and generate probabilistic climate projections. However, such technical improvements to modeling science will do little to deliver on their ultimate promise of improving climate policymaking and adaptation unless the insights they generate can be effectively communicated to decision makers. While some of these communicative challenges are unique to climate ensembles, others are common to hydrometeorological modeling more generally, and to the tensions arising between the imperatives for saliency, robustness, and richness in risk communication. The paper reviews emerging approaches to visualizing and communicating climate ensembles and compares them to the more established and thoroughly evaluated communication methods used in the numerical weather prediction domains of day-to-day weather forecasting (in particular probabilities of precipitation), hurricane and flood warning, and seasonal forecasting. This comparative analysis informs recommendations on best practice for climate modelers, as well as prompting some further thoughts on key research challenges to improve the future communication of climate change uncertainties.